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It is shown that there is an exact one-to-one correspondence between all possible sets of
polynomials (both orthogonal and nonorthogonal) and rules for operator orderings. Operator
orderings that are Hermitian give polynomials with definite parity. Most of the standard
classical orthogonal polynomials are associated with operator orderings that are not
particularly simple. However, there is a special one-parameter class of Hermitian operator
orderings that corresponds to a class of elegant but little-known orthogonal polynomials called

continuous Hahn polynomials.

I. INTRODUCTION

There is a well-known ambiguity that arises when one
attempts to quantize a classical system: there is an infinite
number of quantum operators corresponding to the classical
function ¢"p”. It is conventional to specify the possible opera-
tor orderings O as a sum

n (n) Jkan n—k
k=08 9P9q

n (n)
2ok

3>
Og"p")= (1)

where the coefficients a{ may be chosen arbitrarily. Note
thatifa{® = a{”* then the ordering is Hermitian.' Some of
the better-known correspondence rules are®
(i) symmetric ordering, for which a§® = a{” =1 and
a”=0,forO<k<n;
(ii) Born-Jordan ordering, for which a{ = 1;

(iii) Weyl ordering,* for which a{” = (Z)

In this paper, we point out that with every operator cor-
J
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respondence rule O one can associate a class of polynomials
P, (x) defined by

O(¢'p")=P,[0(gp)]. (2)
Note that when we are given a particular rule O it is neces-
sary to reorder the operators p and g to put O(g"p") into the
polynomial form P, [O(gp)]. The reordering of the opera-
tors p and g requires the use of the commutation relation
[g,p] = i. This commutation relation is characteristic of the
Heisenberg algebra, and therefore the polynomials that are
generated by this procedure must reflect the structure of the
Heisenberg algebra. A different algebra would give rise to
other sets of polynomials.

Il. THEORY

It is easy to see that Hermitian orderings will give rise to
polynomials having definite parity. To illustrate the associ-
ation of a set of polynomials with a Hermitian correspon-
dence rule we write down the first seven most general rules of
the form (1):

(3)

0(gs) = L +iaw’q + ki'rq + kg0’q” +)4'0q + he'p’

2(h+j+ k)

6y — P°4° +590°0 + 1q°P°q" + uq'P°T + 4'P°q + 5g°p°q + rgp°

0 6
(@r 2r+25s+2t+u

where a,b,...,u are arbitrary real numbers. The polynomials

corresponding to these ordering rules are
Py(x) =1,
Pi(x) =x,
Py(x) =x*— (6a — b)/4(2a + b),
Pi(x) =x* — ((23¢c — d)/(4c + 4d))x,

) On sabbatical from Department of Physics, Washington University, St.
Louis, Missouri 63130.
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P4(x) = x4 —_ (W)xz
de +4f+2g
(210e — 30f + 9g)
16(2e + 2f +g)/’
Py(x) = x° — (&Ui?f;é’_‘)xs
2(h+j+ k)
(1689h -7+ Qk)x
16(h +j+ k)

4)
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Py(x) = x5 — (IOIOr + 410s + 501 — 35u)Jc4

42r+2s+ 2t +u)

(24278r + 1478s — 682t + 295u)x2

16(2r + 25+ 2t + u)

_ (20790r — 1890s + 630z — 225u)
64(2r + 25 + 2t + u)

Notice that there is an exact one-to-one correspondence
here between polynomials and operator ordering rules. For
example, to specify a degree-2 polynomial which has even
parity requires one parameter apart from overall normaliza-
tion. Similarly, apart from overall normalization, O(¢*p?) is
determined by one parameter. In the above formulas this
parameter is b /a. In general, apart from overall normaliza-
tion, both a definite-parity polynomial P, of degree n and a
Hermitian ordering rule O(g"p") are uniquely determined
by precisely [#/2] parameters, where [m] means integer
part of m.

A convenient shorthand representation of the order rule
Oistolist the values of a{™ in a pyramidlike table, where a{”
is the k th entry in the nth row. The pyramid corresponding
to (3) is

Notice that if all the entries in any horizontal row are multi-
plied by an arbitrary number then the operator ordering rule
is unchanged.*

There are now two natural questions to ask. First, given
an ordering rule, i.e., given a pyramid, are the corresponding
polynomials orthogonal? Second, if we require that the poly-
nomials be orthogonal, what kind of constraint on the pyra-
mid entries does this give?

To discuss the question of orthogonality, consider an
arbitrary set of definite-parity polynomials:

Py(x) =1,

P(x) =x,

Py(x) =x*+a,

Pi(x) = x> + Bx, (6)

Pyx)=x*+yx*+6,
Pi(x) =x° + ex® + Ex,
Py(x) = x® + px* + Ox* 4k,

Suppose these polynomials belong to an orthogonal set. The
orthogonality condition is that
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fdx W(x)P, ()P, (x) =0 (nstm), 7

where w(x) is the (assumed positive) weight function with
respect to which these polynomials are orthogonal and we do
not specify the range of integration. We use the notation

(x")sjdx w(x)x". (8)

The orthogonality of P, and P, implies that
(x*) +a(1) =0, 9)
the orthogonality of P, and P, implies that

(x*) + p{x*) 4+ 8(1) =0, (10)
and the orthogonality of P, and P, implies that
(x*) + B(x*) =0. (11

Eliminating the positive quantities {(x*") from (9)~(11)
gives a condition that the polynomial coefficients must satis-
fy:

§+af —ay=0. (12)

Equation (12) is actually the first of an infinite tower of
algebraic constraints which the coefficients of a set of or-
thogonal polynomials must satisfy. The next three con-
straints analogous to (12) are®

6+Be—-Byr—§5=0, (13)
af —anfB +afy—ad—k=0, (14)
76— By + OB —k — €5 + €fy — {8 =0. (15)

Because there is a one-to-one correspondence between
polynomials and operator orderings we can immediately
translate the constraints in (12)~(15) into conditions which
must be satisfied by the coefficients a{™ in the definition of
the operator ordering rule in (1). Using the notation in (3)
we see that the pyramid entries must satisfy nontrivial ortho-
gonality conditions, the first two of which are

3adg — beg + 9acg — 10adf — 2bcf + 2acf + 16bde
— 26ade + 14bce — 14ace =0, (16)
9ceh + 17¢fh + 10cgh — cej + T¢ff + S5cgj — 11cek — 3¢fk
— 9deh — 10dfh — 5dgh + dej + dek = 0. (17

We have only listed these two orthogonality conditions
as the others are excessively complicated.

Let us now consider the three commonly used orderings
mentioned earlier in this paper. For the case of symmetric
ordering the pyramid of coefficients has the form

1 1
1 0 1
1 0 0 1
1 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 0 1,

and the first seven polynomials defined by (2) are
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Py(x) =1,
Pi(x) =x,
Py(x)=x*—3,
Py(x) =x"— 2x,
P,(x) =x* —923x2 +‘11965’
Py(x) = x> — 15x* 4 38x,
Py(x) = x® — 3g5x* 4 12L9x? _ 10395
These polynomials do not satisfy any of the orthogonality

conditions (12)-(15). For the case of Born-Jordan order-
ing the pyramid of coefficients has the form

1
1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 ,
1 1 1 1 1 1 1

and the first seven polynomials are

Py(x) =1,

Pi(x)=x,

Py(x) = x* — §,

Py(x) =x* — Yx,

Py(x) =x* —x* + 1,

Py(x) = x° — 15x> 4 1627x,

Py(x) = x° — 295x* 4 3619x% — 19305,
One again, we see that these polynomials do not form an
orthogonal set.

Now consider the case of Weyl ordering, for which the
pyramid of coefficients is Pascal’s triangle of binomial coeffi-

cients:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1
1 1
3 2 3
5 25 25
7 84 202 84
11 327 1582 1582
9 586 5447 10956 5447
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The first seven associated polynomials are

Po(x) =1,

Pi(x) =x,

Py(x) =x2—£

Py(x) =x* —3x, (18)

Pix)=x*—1x*+ 3,

Pi(x) = x> — ix® + 8x,

Po(x) = x® — 5px* 4 430x® — 225,
Remarkably, these seven polynomials satisfy all four ortho-
gonality conditions (12)-(15). Indeed, the full set of poly-
nomials generated in this way is orthogonal. These polyno-
mials were previously discovered in the context of the
quantum finite-element approximation.® They are a special
case of a four-parameter class of orthogonal polynomials
known as continuous Hahn polynomials.”-!! We briefly re-
view the properties of the polynomials (18) below'?: (i) the
weight function w(x) = sech(wx); (ii) the orthogonality
relation is

© 2
dx w(x)P,(x)P,(x) =34, -(;%— ;

(iii) the recurrence relation is
P,(x)=xP,_,(x) —}(n—1)°P,_,(x);
(iv) the generating function is

oo t"P,, (x) erarctan(t/Z)

T+

and (v) aclosed form expression for the #th polynomial may
be given in terms of a generalized hypergeometric function:

P, (x) = [(—)"nl/2"]sFy( — mn + 1} — i(x/2)34,151).

One might wonder what the pyramid of coefficients
looks like for some of the better known sets of classical or-
thogonal polynomials. For example, for the Chebyschev
polynomials

n=0 n!

To(-x) = 19
T](x) =x,
Tz(-x) =x2_%9

Ti(x) =x" —3x,

Tx) =x*—x>+1,

Ts(x) =x°> —3x° + §x,
To(x) =x°— 3x* + 2x% — 4,

and the corresponding pyramid of operator ordering coeffi-
cients is

327 11

586 9
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The entries in this pyramid do not seem to follow any obvious pattern.

The pyramid for the Hermite polynomials,

Hy(x) =1,
H\(x)=x,
Hy(x) =x—1,
Hy(x)=x"—¥x,

H,(x) =x*—3x"+}
Hi(x) =x°—5x> + Lx
Hg(x) = x5 — Lix* + 45x* —

15

-8
is
|
1 1
3 2 3
7 17 17 7
25 76 182 76 25
27 159 454 454 159 27
331 2582 11653 16948 11653 2582 331
Also, the pyramid for the Legendre polynomials,
Ly(x) =1,
Li(x)=x,
Ly(x) =x*—},
Li(x) =x* —¥x,
Ly(x) =x*—&* + 4,
Ly(x) =x° — 9x° + kix,
Lg(x) = x5~ Bx* + §x% — 5%,
is
1
1 1
7 10 7
17 103 103 17
203 2948 7138 2948 203
583 20091 100286 100286 20091 583
3491 261462 2511213 5092148 2511213 261462 3491
U

Once again, we observe that the pyramid entries are compli-
cated numbers, which do not fit a recognizable scheme.
Apparently the classical orthogonal polynomials give
pyramids with ugly entries. However, Weyl ordering is not
the only ordering rule which has elegant pyramid entries and
gives orthogonal polynomials. In fact, we have found an infi-
nite one-parameter family of (Hermitian) operator ordering
rules which generates a one-parameter class of orthogonal
polynomials. The pyramid entries have a simple formula,

a(n)_(n+l)(n+l)(n+l)—‘
TN g i+1 l ’

where [ is an arbitrary real parameter. The corresponding
polynomials also belong to the large class of continuous

(19)
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Hahn polynomials. The properties of these polynomials are
as follows'?: (i) the weight function w(x) is

w(x) = (172m) T4+ ix) P|TU+ 4 + ix) |3,
and when /is an integer
I—1
w(x) = % sech?(mx) JAI=IO{x2 + [l— (j+ -;—)n (20)

(ii) the orthogonality relation is

fm dx w(x)P,(x)P,, (x)

_ m(n!)?3
(e +'@en+2+1)

F'(n+21+1)
r@2n+21+1)

2
) Sms

1730
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(iii) the recurrence relation is
P (x)=xP,_,(x)

1 (m=D¥n+2-1)°
4 2n421-1)2n+21-3)
and (iv) a closed-form expression for the nth polynomial is a
generalized hypergeometric function,
Fn+2+DI(r+DI(n+141)
TRn+2/+ DU+ 1)

Pn—z(x);

P,(x}y=(—0"

X3F2( —nn+ 20+ 1,—;— —ix;1,1 + 1;1).

The cases / = 0 and / = 1 have particulary elegant pyra-
mids because the entries are all integers with the entries
along the outside edges all being 1. When / = 0 the pyramid

18

1
1 1
1 4 1
1 9 9 1
1 16 36 16 1
1 25 100 100 25 1 ,

1 36 225 400 225 36 1

and when / = 1 the pyramid is

1 21 105 175 105 21 1

lil. CONCLUSION

In this paper we have shown that there is an exact one-
to-one correspondence between the ordering of operators
satisfying the Heisenberg algebra and the construction of
polynomials. We also find that there is a very deep and natu-
ral connection between continuous Hahn polynomials,
which are orthogonal, and certain classes of Hermitian or-
derings. The main purpose of this paper is to suggest a new
way of revealing the mathematical structure of an operator
algebra. By the methods we have used in this paper it is clear
that we can examine other algebras besides the Heisenberg
algebra. Given that the Hahn polynomials play a special role
in the Heisenberg algebra one can ask what the analogous
special polynomials are for other algebras. It was not the
purpose of this paper to discuss the applications of the con-
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nection between operator ordering and polynomials because
they are discussed elsewhere. The application of operator
ordering and Hahn polynomials to the solution of the unitar-
ity problem in the finite-element approximation to quantum
field equations is discussed in Ref. 6. We consider the appli-
cation of operator ordering and Hahn polynomials to the
exact solution of continuum operator Heisenberg equations
of motion arising from Euler Hamiltonians in Ref. 14.
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Geometrical classification scheme for weights of Lie algebras
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Every weight of a Lie algebra belongs to one particular Weyl orbit. The depth within an orbit
has been defined as the minimum number of Weyl reflections associated with simple roots that
are necessary to transform the weight into the dominant weight of the orbit. A simple set of
classification parameters that measures the depth and distinguishes between different weights
of the same depth is introduced. The parameters are geometrical in that they are related
directly to the orientation of the weight vector. They correspond to a particular member of the
Weyl group that transforms the weight into the dominant weight. A simple rule is given for
listing all the weights of an orbit in terms of the parameters.

I. INTRODUCTION

In the 1950’s Dynkin developed a method for construct-
ing the irreducible representations (irreps) of a finite, simple
Lie algebra by subtracting simple roots from the most posi-
tive weight.! When one uses this method, a useful concept is
the level number of a weight M, defined as the number of
simple roots that must be subtracted from the most positive
weight to obtain M.?

This procedure has two serious defects. First, it is too
time-consuming to be practical for large irreps. The second
defect is that one must keep track of the result of previous
steps in the procedure. As a result, one cannot start any-
where in constructing an irrep, but must start at the top or
bottom.

One can remedy these defects by combining Weyl sym-
metry with the Dynkin method. All weights obtainable from
a weight M by series of zero or more Weyl reflections com-
prise the Weyl orbit, or Weyl class, of M. All weights in an
orbit have the same multiplicity in every irrep. Thus con-
structing an irrep may be divided into two parts. One finds
the orbits in the irrep and their multiplicities, and one finds
the weights in each orbit. One of the earlier authors to em-
phasize this approach was Humphreys.? Some detailed al-
gorithms for finding the orbits in an irrep and their multi-
plicities have been given in the recent literature.**

Combining Weyl symmetry with the Dynkin method is
useful also for the classification of weights. Each weight be-
longs to an infinite number of irreps, and so is not associated
naturally with any one particular irrep. On the other hand,
each weight belongs to only one Weyl orbit. We consider
here the problem of classifying the weights of an orbit with a
depth parameter that is analogous to the level number in the
irrep construction procedure, and “position” parameters to
distinguish different weights of the same depth. One
straightforward method of constructing the weights in a
Weyl orbit has been known and used for years. One starts
with the most positive weight and generates the others by
series of Weyl reflections associated with the simple roots.
Each weight may be labeled by the series of reflections used
to obtain it in the construction. This method is reviewed in
Sec. I1.
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The purpose of this paper is to introduce and discuss an
alternate, geometrical classification scheme. The construc-
tional and geometrical methods are different; each has some
advantages. The relation between the two methods, sum-
marized by Theorem 2 of Sec. V, is illuminating. Two of the
attractive features of the geometrical scheme are that it leads
to a natural and unique set of position parameters, and it
leads to an uncomplicated rule for listing all the weights in
an orbit.

Some basic formulas and procedures are reviewed in
Sec. II. The classification parameters are defined in Sec. III.
Their most important properties are derived in Secs. IV and
V. An example is discussed in Sec. VL.

Il. BASIC FORMULAS AND PROCEDURES

The standard Cartan—-Weyl definition of weights is
made. A maximal set of commuting generators of a semisim-
ple algebrais chosen and denoted by H, - - - H,,, where n is the
rank of the algebra. The H, are diagonalized for eachirrep. If
Misastatein anirrep, H;M = f;M. The weight M is a vector
in an n-dimensional Euclidean space with components f;. A
root is a weight of the adjoint irrep.

The orthogonal axes are ranked from 1 to #. A weight is
defined as positive if its first nonzero component is positive.
A weight A is more positive than B if 4 — B is positive. A
simple root is a positive root that cannot be written as a sum
of two positive roots. There are n simple roots. The integral
Dynkin components m; of a weight M are defined by the
scalar product equation,

m; =(R;,M)(2/R}),
where R; is a simple root.

The Weyl reflection .S, associated with the nonzero root
a permutes the weights of the algebra. The effect of S, on a
weight M is given by®

S,(M) =M — {a,M)(2/a*)a . 2.2)
If a is a simple root R; the reflection is called simple and
denoted by S,. It is seen from Eqgs. (2.1) and (2.2) that

S;(M)=M-—mR,. (2.3)
The jth Dynkin component of the simple root R, is given by

2.1
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(r;); =A;, where the Cartan matrix 4 is defined by
A; = (R,,R;)(2/R}). It follows that the jth Dynkin com-
ponent of Eq. (2.3) is

Si(M); =m; —m;A; . (2.4)

The Weyl group consists of all products of any number
of Weyl reflections. Therefore every member S of the Weyl
group has the property,

(S(M]),S(Mz)) = (MpMz) ’

where M, and M, are arbitrary weights.

A dominant weight is one with no negative Dynkin
components. The most positive weight in an orbit is domi-
nant, and is the only dominant weight in the orbit.

It is seen from Eq. (2.3) that the simple reflection
S; (M) leads to a more positive weight, a less positive weight,
or the same weight if the Dynkin component m; is negative,
positive, or zero, respectively. I define a positive simple re-
flection series of a weight M as one in which each reflection
corresponds to a negative Dynkin component, and so leads
to a weight of greater positivity. Given an arbitrary weight
M, one method of obtaining the dominant weight is by mak-
ing a positive simple reflection series. If one wants to con-
struct the complete orbit corresponding to a dominant
weight M **, one can try all possible negative simple reflec-
tion series.

Moody and Patera have suggested that the depth of a
weight M be defined as the minimum number of simple re-
flections necessary to proceed from M *+ to M.” This is cer-
tainly a reasonable definition.

Each weight of a particular depth may be labeled by
listing roots of a minimal simple reflection series from M **
to M. There may be many minimal paths, in which case one
has a choice of labels. Of course one may use a convention to
make the choice unique, such as numbering all the simple
roots and resolving all choices of negative simple reflections
in favor of the root with smallest (or largest) tag number.
However, such a convention is artificial and not very aes-
thetic.

(2.5)

lil. GEOMETRICAL CLASSIFICATION PARAMETERS

In this section the geometrical classification parameters
are introduced and some of their properties discussed. The
proofs of the statements made are given in Secs. IV and V.

The orbit of a weight is specified in the conventional
manner, by listing the Dynkin components m* * of the
dominant weight M **,

The parameters called here position parameters distin-
guish all weights in an orbit. Let [T be the set of all positive
roots. The position of a weight M is specified by listing all the
roots 7 in the set I that satisfy the relation,

(mM) <0. (3.1)
This is called here the signature list. The depth of M is the
number of roots in the list. This is identical to the depth
defined in Sec. I1. Two different weights in an orbit necessar-
ily have different signature lists. This method is geometrical
because the roots in the signature list are related directly to
the direction of M in weight space. Clearly, the depth is a
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rough measure of the angular distance between Mand M * *.

Each orbit belongs to one of a finite number of patterns,
where a pattern is defined by the set of Dynkin components
m;t * that are zero. The set of signature lists that denote the
weights of an orbit is the same for all orbits of the same
pattern.

IV. THE DEPTH MEASURE

The equivalence of the depths defined in the construc-
tional procedure (Sec. II) and the geometrical procedure
(Sec. III) is shown by the theorem given below. The symbol

'N_ (M) is used to denote the number of positive roots s that

satisfy Eq. (3.1).

Theorem 1: The number of reflections in any positive
simple reflection series from M toM * * isequal to N_ (M).

It is clear that if M is dominant, N_ (M) = 0 and the
theorem is satisfied. Hence we consider an arbitrary non-
dominant weight M, and a simple Weyl reflection S; asso-
ciated with a negative Dynkin component m;. It is sufficient
to show that N_[S;(M)] = N_(M) — 1. It follows from
Eq. (2.1) that (R;,M ) <O0. Since all diagonal elements of the
Cartan matrix are equal to two, it follows from Eq. (2.4)
that S;(M); = — m;. Consequently, (R;,S;(M)) > 0. I de-
fine I1; to be the set of all positive roots except R;. Since the
R; scalar product produces the desired decrease in N_ [as
one proceeds from M to S;(M)], it is sufficient for the
theorem if the number of negative scalar products
(m,5;(M)) is equal to the number of negative scalar prod-
ucts (M ) when 7 ranges through the entire set IT;. In order
to show that this is the case, we first note that because of Eq.
(2.5) and the condition S} =1,
A lemma given by Jacobson states that if « is any positive
(negative) root other than R; ( — R;), then §; () is also a
positive (negative) root.® Since R, is excluded from II,, the
transform §; (7) is positive when 7is in I1;. The set. S, (I1;) is
identical to the set IT;. Because of Eq. (4.1), this is sufficient
to prove the theorem.

If o7 is the algebra under consideration, &, is defined as
the algebra obtained by writing the Dynkin diagram for .o/
and deleting each circle (with its connecting lines) that cor-
responds to a positive Dynkin component of M **. The
proof of Theorem 1 can be extended to show that if M ~ ~ is
the most negative weight of an orbit, then

N_(M~7)=P&) — P(Ay), (4.2)
where P(') is the number of positive roots in the algebra
/. This formula is given, without proof, in a previous pa-
per.®

The algebra .7, was introduced (with a different nota-
tion) in Ref. 7, where it is shown that D., the number of
weights in the orbit C, is given by

De =D(A)/D(A,) , (4.3)

where D(.<) is the number of elements in the full Weyl
group for the algebra o7
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V. CORRESPONDENCE OF PARAMETERS TO A WEYL
TRANSFORMATION

In this section the depth and position parameters are
related to a particular member S of the Weyl group with the
property S(M) = M **_ First we need a convenient method
of labeling all the members of the Weyl group. I define a half-
root set to be a set of nonzero roots that contains exactly one
of each pair of conjugate roots. Let a be a half-root set and §
a Weyl transformation. The roots S, defined by S(a;) = 8;,
must also be a half-root set.

It is convenient to choose the a; to be 77;, the members of
the set I1*. The signature of each positive root 7, is defined
tobe ( + 1) if S(,;) is a positive root, and ( — 1) if §(=;) is
a negative root. Thus if § |+ denotes the positive member of
the pair (8;, — B;), one may write

S(m;) =B, = [Sigm(S)]B,", (5.1)

where [Sig 7;(S) ] is the signature of 7, for the transforma-
tion S. The list of signatures of the 7, specifies the transfor-
mation uniquely.'®

We consider a Weyl transformation S with the property
S(M) = M **. This condition does not specify .S uniquely
unless the pattern of M ** is m;* + > O for all i. However, if
S is a positive simple reflection series, it is determined
uniquely. This is true despite the fact that often there are
many different positive simple reflection series that lead
from M to M **. In order to prove this point we write the
scalar product (r;,M ) of Eq. (3.1) in the form

(1Ti9M)=(7Ti’S_I(M++))=<S(7Ti)9M++>3 (5-2)

where Eq. (2.5) has been used. If one combines Eq. (5.2)
with Eq. (5.1), the result is

(m M) = [Sigm,(S)] (B, M**). (5.3)

The scalar product of a positive root and a dominant weight
cannot be negative. Therefore, if {,,M ) #0, the sign of this
scalar product is that of [Sig 7,(S)].

Equation (5.3) cannot be used to determine the signa-
ture of 7, if (m,,M ) = 0. However, the lemma of Jacobson,?
discussed in Sec. IV, can be used to show that the number of
7; in the set I1* with negative signatures cannot exceed the
number of terms in a positive simple reflection series from M
toM * . It follows from this and Theorem 1 of Sec. IV that
if {7;,M ) = 0, the signature of 7, is positive. All signatures
are determined, so the S is unique.

The list of positive roots satisfying {7,,M ) <0, used to
specify position and depth in Sec. III, is the list of negative
signatures of the unique .S’ defined as a positive simple reflec-
tion series that transforms M into M * .

The Weyl reflection surfaces divide the weight space
into sectors, sometimes called chambers. If all m;* * are
positive, the weights of the orbit are not on any sector boun-
daries. This is the maximal pattern; there is one weight in
each sector. It is convenient to make a one-to-one correspon-
dence between the sectors and the members of the Weyl
group; each sector ¥; corresponds to the transformation that
takes V; to the dominant sector V' +*. If sector ¥ corre-
sponds to the transformation S, the sector corresponding to
S ~!is called ¥ —*. If two sectors differ in the signature of
only one positive root, they intersect in an (n — 1)-dimen-
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sional boundary, and are called adjacent.

There is a subtle but uncomplicated relation between the
constructional and geometrical labeling schemes. This is
best illustrated by considering two consecutive sectors in a
negative simple reflection series that starts with '+ *. Let
these two sectors be 7(¥ " *) and S;T(¥V * ™), where T'is
any Weyl transformation and S; is a simple reflection. These
sectors may be far apart. Next we consider the inverses of
thesetwosectors, T ~'(¥ **)and T ~'S;(¥ * *).Theselat-
ter two sectors are adjacent because S; (V' * ) is adjacent to
Y *+, and the transformation T ~' preserves angles. Since
the number of adjacent pairs is equal to the number of pairs
related by a simple reflection, the following theorem is valid.

Theorem 2: Two sectors U and V are related by one
simple reflection if and only if the inverse sectors U ! and
V ! are adjacent.

We next consider the problem of finding the rules for the
signature lists corresponding to the Weyl orbits. We start
with the maximal orbits, which correspond to the full Weyl
group. The positive roots 7, have the property that no three
add up to zero. If S(7;) = B,, it follows that the B’s also
have this property, i.e.,

Bi+B; + B #0, (5.4)

It is easy to see that this rule may be written in terms of the
signatures in the following way:

foralli,j, and k.

If my=m+m,
and Sigw; =Sigm;,
then Sigm, =Sigw; .

This signature condition is necessary for all Weyl transfor-
mations. It is also sufficient, as may be seen from the follow-
ing proof. We consider the inverse transformation. Let Sbe a
half-root set that satisfies Eq. (5.4). We need to show that a
Weyl transformation exists that transforms the set S into the
set [T*. We assume that the set 8 is not identical to [T*. Let
7, be the least positive member of I1* that is not in the B set.
Thus ( — 7,,) isinthe Bset. If 7, is not a simple root, it may
be written 7,, = 7, + m,. Since 7, 7,,and ( — 7,,) arein
the B set, this implies a violation of Eq. (5.4). Consequently,
,, must be simple.

Let n_ be the number of negative roots in the set 8. If
this set is transformed by the simple Weyl reflection S, asso-
ciated with 7, the Jacobson lemma states that the number
n_ is decreased by one.® One can construct a series of simple
reflections of this type, each decreasing #_ by one, until #_
is zero. The product of these reflections is a Weyl group
member then transforms the 8 set into IT+.

Next I will write a simple rule for specifying the subset
of the allowed signature lists that applies when the orbit is
not maximal, i.e., when one or more m;* * is zero.

Orbit Rule: If one or more of the m;* + are equal to zero,
the allowed signature lists correspond to the inverses of the
transformations for which the signatures of the simple roots
corresponding to the zero-valued m;* * are all positive.

This rule is applied in Sec. VI.

IfM ** has/ different zero-valued Dynkin components,
all the weights of the orbit are on (n — /)-dimensional inter-
sections of two or more sectors. For any (# — /)-dimension-
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al boundary, one of the depths of the sectors intersecting at
the boundary is smaller than the others. The labeling pre-
scription of Sec. I1I labels a weight on the boundary with the
signature list of the intersecting sector of minimum depth.

Vi. EXAMPLE

We discuss as an example the algebra 4,{SU(5)], in
particular the weight W with Dynkin components ( — 3 5
— 3 1). Since the number of positive roots of 4, is only ten,
one could determine the dominant weight of the orbit of W
fairly quickly by making a simple reflection series. However,
I will use the alternate method of working in a special basis,
since this technique is fast even for more complicated alge-
bras.'' The quarks of SU(5) are numbered 1 through 5 in
order of decreasing positivity. If & denotes the antiquark of
quark k, the four simple roots are

A=(12), B=(23), C=(34), D=(45). (6.1a)
The other six positive roots are
E=(13), F=(24), G=(35),
(13) (24) (35) (6.1b)

H=(13), I=(25), J=(15).

The normalization is such that these roots are of length /2.
If m, are the Dynkin components of a weight M, integral
“quark components” f; exist that satisfy the equation'?

m; =f; —f;'+l . (6.2)

One may choose any one of the five f; arbitrarily and use Eq.
{(6.2) to determine the other four. The number f; represents
the number of quarks / minus the number of antiquarks 7 in
the weight. The quark components are convenient for ex-
pressing the scalar product with a root, i.e.,

(Uk)M) =f, —fi . (6.3)
It follows from Egs. (2.2) and (6.3) that the different
members of an orbit correspond to all distinct permutations
of the five f;. The dominant weight is the permutation such
that £, >f; ., forall i.

A set of f; for the weight W=(—-35 —3 1) is
[25032]. The dominant weight of this orbit is [ 53220] with
Dynkin components (2 1 0 2). It is seen from Egs. (6.1a),
(6.1b), and (6.3) that the set of positive roots with negative
signatures for Wis (ACGH).

For A, it is not difficult to prepare a complete list of the
120 Weyl transformations and their inverses, from which the
signature lists of all weights of all orbits may be read." I
illustrate by considering the 20 transformations of depth 4.
These are listed in Eq. (6.4) below, together with their in-
verses. The notation X * = Y indicates that X and Y are in-
verses, while the subscript s denotes a transformation that is
its own inverse. The list is

ABDE,, ABEH* =ACFH, ACDG,,
ACEH* =BCFH, ACGH®* =BDEI, ADEJ*= CFGH,
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ADGJ* = BEFI, AEHJ* = DGIlJ, BCFI* = BDGI,
BDFI* =CDGI, BEFH, CFGI,. (6.4)

For example, consider an orbit of the pattern
(+ + 00),ie,m"* =m;* =0. It is seen from Eq.
(6.4) and the orbit rule of Sec. V that the depth-4 weights in
the orbit have the signature lists ACFH, ADGJ, DGIJ, and
BEFH.

In the case of W there are five different positive simple
reflection series leading to the dominant orbit weight. If one
considers the most negative weight of a maximal orbit of 4,,
all ten signatures are negative. For such a weight there are
768 different positive simple reflection series leading to the
dominant weight.

Vil. CONCLUDING REMARK

In any parametrization, it is desirable that as many pa-
rameters as possible are bounded absolutely, in the sense that
the bound depends only on the algebra. It is impossible to
classify all weights by a finite set of parameters, each of
which is bounded in this way, since the number of weights is
infinite. However, in the parameter scheme outlined in Sec.
II1, only the Dynkin components of the M * + are unbound-
ed. The number of patterns is 2", where 7 is the rank. The
number of weights in an orbit is bounded by the size of the
Weyl group, and the number of negative signatures is bound-
ed by the number of positive roots.
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In this paper the ring of polynomial invariants of the icosahedral group I is studied. It begins
by reviewing the surprising connections that this group and its double cover II have with
various areas of mathematics and physics of current interest. Information concerning the
representation theory of these groups is then given. After a brief discussion of the methods
involved, the integrity basis of the ring of polynomial invariants for each irreducible
representation of I is given, together with syzygies. These are expressed in terms of the
invariants of the tetrahedral subgroup T of I. Finally other methods of finding these invariants

are discussed.

I. INTRODUCTION

The purpose of this paper is to contribute to breaking a
*...conspiracy of silence about the icosahedron in the physics
literature” (a complaint voiced in a recent review' on quasi-
crystals). Motivation for our work originates in that, within
a very short space of time, the interest in icosahedral symme-
tries has started to grow in completely unrelated fields of
mathematics (through its deep relation to the largest of the
exceptional simple Lie groups) and in physics in two very
different fields, quasicrystals, and (Eg-based) superstring
models, probably the “hottest topics” at present.

The icosahedral group? I is the largest of the finite sub-
groups of the SO(3) group. Its distinguishing feature among
these groups is that it contains elements of order 5 and there-
fore it cannot be a symmetry of a two- or three-dimensional
crystal (lattice). Until a few years ago it had been of margin-
al physical interest. Now, however, the presence of fivefold
symmetry in solids has been observed,® which may be ex-
plained in terms of quasicrystals' or icosahedral glasses.*
Consequently there is a role for the icosahedron to play even
in physics (in biology the fivefold symmetry of living organ-
isms is long well known®®). In spite of the long history of the
subject, a number of obviously important properties of the
icosahedral representation theory have not been worked out.
This work partially fills the gap.

The discovery of quasicrystals was preceded in math-
ematics by the discovery of curious, apparently far reaching,
but not yet fuily understood relations between simple Lie
algebras/groups and the finite subgroups of SU(2), in par-
ticular, the algebra of type Eg and the icosahedral group.
Therefore when the E; group later turned out to be of prime
interest in elementary particle physics, one justly wondered
about the role of the icosahedral group there.

In this paper we study the structure of the rings of poly-
nomial invariants of I, with variables transforming under
one of the five irreducible representations of ICSO(3). We
find the integrity bases of the invariants together with their
syzygies. In a way this completes the results of Ref. 7 where
the icosahedral case was left out for lack of motivation (in
1978) and because in itself it is larger than all the finite sub-
groups of SO(3) studied there.

In Sec. II we point out the amazing relations between E;
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and I. Section III contains relevant information about the
tetrahedral subgroup T and its irreducible representations,
decomposition of their tensor products, etc., and in Sec. IV
we discuss the general structure of the rings of polynomial
tensors of representations of any finite group G. The results
relevant to our study are given. These three sections form a
collection of known facts put together in a form suitable for
our purpose. Our results are described in Sec. V (and sum-
marized in Tables IX-XIV). This section also contains a
description of the methods of our computation. Finally in
Sec. VI we discuss other methods of calculating the integrity
bases, and record some alternative conventions.

li. THE ICOSAHEDRAL GROUP

Just as the rotation group SO(3) has double-valued rep-
resentations that are single-valued representations of the
covering group SU(2), so the icosahedral group I has dou-
ble-valued representations that are single-valued representa-
tions of the double icosahedral group IICSU(2). The irre-
ducible representations of II are denoted by T,,...,I'g, and
may be classified as either odd or even. The odd representa-
tions are faithful representations of II and are contained in
SU(2) representations of even dimension. They are thus the
“spinors” of 1. The even representations are contained in the
SU(2) representations of odd dimension and are not faithful
representations of II, but rather of II/{1, — 1}=1. They
may thus be identified with the irreducible representations of
I. In the numbering scheme adopted here the first five repre-
sentations of II are even and the last four odd. This number-
ing is chosen to coincide with that of Refs. 1 and 2. Although
our calculation will concern only the even representations
we shall where convenient include details of the odd ones. In
particular, the connections between the icosahedral group
and E; involve the spin representations.

The character table of II is shown in Table I in which »
denotes the “golden ratio” (1 + /5)/2, asolution of the qua-
dratic equation x?-—-x —1=0. The SU(2)-conjugacy
classes of each double icosahedral conjugacy class are also
included. The notations we use and the properties of the
SU(2)-conjugacy classes of elements of finite order were ex-
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TABLE I. Character table of the double icosahedral group II, w is the “golden ratio” (1 + /5)/2. The first three rows give the number of elements in each
conjugacy class, the corresponding SU(2) conjugacy class and the orders of the elements in each class.

of i G c; G C; (A G C;
1 1 12 12 12 12 30 20 20
[10] {o1] [32] [23] (14] [41] (11] (12] [21]
1 2 5 10 5 10 4 3 6
T, 1 1 1 1 1 1 1 1 1
r, 3 3 l-w | ] @ @ -1 0 0
r, 3 3 @ ) l—w l—-w —1 0 0
r, 4 4 -1 -1 -1 -1 0 1 1
| g 5 5 0 0 0 0 1 -1 —1
| O 2 -2 w—1 l—w —w ) 0 -1 1
r, 2 -2 —w ) o—1 l—w 0 —1
Ty 4 —4 -1 -1 1 0 1 —1
T 6 —6 1 - 1 -1 0 0 0

haustingly described in Ref. 8. We do not repeat it here. For
convenience we have also included the orders of the elements
of each conjugacy class, although this information may be
deduced from a knowledge of the corresponding SU(2)-con-
jugacy classes.

In Table II we display the decompositions of the tensor
products of the representations I'},...,I'g, while in Table III
the generators of these irreducible representations are given.
We have chosen a form of the generators in which the first
two generate a tetrahedral subgroup. This enables us to
make use of previous calculations of the invariants and co-
variants of this subgroup.” It should be noted, however, that
I (or II) may be generated by just two elements. In the case
of the two three-dimensional representations I', and I'; we
have displayed only the generators of I',. Those of I'; are
obtained simply by replacing @ by | — o, that is, by selecting
the other root of the equation x> — x — 1 = 0. This com-
ment also applies to the invariants and syzygies described
later.

In the case of the even representations of II there exists a
method® for finding explicitly the required generators by

making use of the fact that I= A, the alternating group of
even permutations of five objects. Once these even genera-
tors have been found'® we may obtain the generators of the
two-dimensional fundamental spin representation in the fol-
lowing manner. Let g be an SU(2) matrix and ¢, i = 1,2,3,
be the Pauli spin matrices, i.e.,

a b
g=[—b* a#]’ |alz+|b|2=lv

and

o= o =2 ] 2=y %

The action on g on the ¢’ by conjugation now yields an
SO(3) transformation D, (g),

gajg_] = ZDU(g)af
J

Ifa =a, + ia, and b = b, + ib, then D;(g) is given by

TABLE II. Decompositions of the tensor products of irreducible representations of II.

I, T, I, T, | A I, Iy T,
r, I, r, r, T, | r, Ty | 3%
r, I'sel,eT, I'sel’, Iseleol, I'sel,el, I'gely r, Iyel,el, yelzel,
ol,
| 8 Isel';eT, I'sell,el, I'sel,el; ) IS I'yel, Fyel'yel, Iyolgel,
ol', ol
r, I'sel',eT; 2o, 0, Iyol, Tyely 2l Ty 2lye2l e T,
ol'el, ol, [::3 A
s s, o, Feolly, TyeTy 2y 2l rye2lgel,
olLel, ool 3 W
| r,erl, r, I'sel, rel,el,
I, el INsel, Fsell,ell,
Iy Iselel, 2I,e2l T,
ol,erl, ol,
L, 3P e2l @26,
o2l el
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TABLE III. Generators of II for each irreducible representation. Here A,, A,, and A, correspond to the three permutations (123), (12)(34), and (12)(45) under the identification of II with A (Ref. 10) and
o= eZm'/J'

BISIEY ' PUB SUIIWIND [ D

8eL!

A, A, A,
0 0 1 1 0 0 \ 1 o l—w
Tyl 100 0 -1 0 -5 e 1-e 1
01 0 0 0 —1 l-w 1 @
100 0 10 0 0 15 BB
r 00 0 1 01 o 0 1{vys =3 1 1
N 01 00 00 —1 0 415 1 1 -3
0 0 1 O 0 0 0 —1 5 1 _3 1
0 01 0 O 1 0 0 0 0 0 1 1 -1 -1
1 0 0 0 O 0 -1 ] 0 0 ; 1 1 0 -0 -
I's 01 0 0 O 0 0 -1 0 O —2— 1 0 1 -0 -0
0 0 0 ¢ O 0 0 0 1 0 -1 —-0 -0 0 1
00 0 0 & 0 ] 0 0 1 —1 -0 - 1 0
1 N i] [V - 1[—i(1—m) w+i]
I — (1 —
¢ (2)( +')[1 —i —i 0 2l —e+i il-w
| . i (| R 1[ —iw l+i—w]
I — (1 =
7 (2)( +l)[1 i 2l—-1+4+it+o iw
”[ c—o—i 1—i —io(w+ o) (io* —i— 1)(Pw+1)
1 . —i—1 F—o+i (i? — i+ 1) (FPo+1) io(w + o)
Iy — (1440 . . . . :
2 —io(ow + 1) (ic~i—1(ow+1) - +o—i 1—:
(ioc— i+ D(ow+1) io(ow + 1) —i—1 —F+o+i
0 0 1 e l-e i 14i
T, 100 s( - o l-—o 1 ®—[ 1+"_"+w iw'“’]
0 1 0 1—w 1 @




& —a —b? b3
2(01(12 - blbz)
2(a,b, + a,b,)

— 2(a,a, + b,b,)
al —a:+b?—b3
2(a,b, — ab,)

Identifying this matrix with each of the generators of I',
in turn then allows us to find the corresponding elements of
SU(2) up to a choice of sign. This gives us the generators of
T, and those of I'; are obtained similarly from the genera-
tors of I'; or equivalently by substituting 1 — @ for w. This is
essentially the method described by Hamermesh.'' The re-
maining odd generators may be obtained by taking the ten-
sor product of the basic spin representation with suitable
even representations (thanks are due to H. Zassenhaus for
this observation).

From Table II arises the first remarkable connection'?
between the icosahedral group and Ez;. We first define the
9X 9 matrix mj, to be the multiplicity of the representation
I, in the Kronecker product of I"; with T';, i.e.,

T,oT, = @ m,T.

From this matrix a directed graph A of nine nodes is
now constructed and with edges of multiplicity m;, from the
j thtothe k th nodes. As usual the convention is adopted that
two edges of opposite orientation and the same multiplicity
between the same pair of nodes are replaced by an undirected
edge. The result of this procedure is the following graph:

2
o—o—i—o——o—o——o——o,
6 4 9 5 8 3 7 1

which is the Dynkin diagram of affine E; [if we also label the
i th node by the dimension of the J th representation we ob-
tain the marks of E; (see Ref. 13) ]. This is a particular case
of the following result of Ford and McKay.'?

Proposition: Each of the five types of finite groups, the
cyclic group (of order r + 1), the dicyclic group (of order
4{r — 2}), the double tetrahedral group, the double octahe-
dral group, and the double icosahedral group, have a two-
dimensional representation such that corresponding graph
A is the Dynkin diagram of the affine algebras A,, D,, E¢, E;,
and E,.

The second relation between the icosahedral group and
E,, or more generally between a finite subgroup of SU(2)
and the simple Lie algebras of types A, D, and E, can be
described as follows. If G is a finite subgroup of SU(2) then
G acts naturally on C? and the orbifold C?/G has a singular-
ity at 0. These singularities are Kleinian singularities. The
way in which these singularities are related to simple Lie
algebra g of types A, D, and E was recognized by Grothen-
dieck et al., and was worked out in detail by Slodowy.'* The
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—2(a,b, — ayb;)
- 2(alb2 + azbl)

2 2 2 2
ai+a;—bi—b;

r

nilpotent cone ¥ in g is an algebraic variety of dimension
dim g — rank g. Inside it there lies a subvariety B’ of codi-
mension 2 that is formed by the elements called subregular
(these actually form a single orbit under the action of the
adjoint group). Any two-dimensional complex space in B
transverse to B’ in B has a singularity at 0. This is precisely of
the same form C?/G for the appropriate G. One has G = Ilin
the case g = E;.

fll. THE TETRAHEDRAL SUBGROUP

The tetrahedral group T, being the largest subgroup of I,
is hence a convenient tool in our work. Therefore, in this
section we recall some of the relevant properties of the irre-
ducible representations of T and the corresponding double
point group TT.

We denote the irreducible representations of TT by
Y1s--»¥7. As in the icosahedral case these representations
may be classed as either odd or even: 7,,...,%, are the even
representations and correspond to the irreducible represen-
tations of T, and ¥s,...,¥, are the odd representations. The
character table of TT is shown in Table IV; o stands for
e*™3, Each TT-conjugacy class is also identified by the
SU(2)-conjugacy class to which it belongs. Table V contains
the decomposition of tensor products of irreducible repre-
sentations of TT.

The nontrivial generators of TT are given in Table VI,
the generators of the odd representations are obtained in the
same manner as described above for II. Table VII contains
the reduction (branching rules) of the irreducible represen-
tations of II to a direct sum of representations of TT. With
the exception of I, these branchings may be obtained direct-
ly from the forms of the generators of Il and TT in Tables IT1
and VL

TABLEIV. Character table of the double tetrahedral group TT; o = 2™,
The first three rows give the number of elements in each conjugacy class, the
corresponding SU(2) conjugacy class and the orders of the elements in each
class.

¢ C G G ¢ ¢ C;
1 1 6 4 4 4 4
[10] (o1] [} [12] [21] [12] [21]
1 2 4 3 6 3 6
7 1 1 1 1 1 1 1
V2 1 1 1 o o ' o
73 1 1 1 o o’ o o
Ya 3 3 -1 0 0 0 0
¥s 2 -2 0 -1 1 -1 1
Yo 2 -2 0 -—-o o -0 o
¥y 2 -2 0 -0 ¢ -~0 o
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TABLE V. Decompositions of the tensor products of irreducible represen-
tations of TT.

TABLE VII. Reduction (branching rules) of the irreducible representa-
tions of II to a direct sum of irreducible representations of TT.

i V2 V3 Ya ¥s Yo 1}
W 2 Vs Ya Vs Ye 1£4
Y2 Ys N Vs Ye I¢] Vs
Vs Y2 Ya Y7 Vs Ye
7 207)87:0 1287 VsOVs® V7 VsV @ Vs V5OV 0 V5
Vs Ya® Vs Ya® 72 Ya@Ys
Ye Ya® Vs Ya® 7,
Y7 Ya® Y2

IV. STRUCTURE OF THE RING OF POLYNOMIAL
INVARIANTS

For any group G we may introduce a set of variables
X,p,2,... that carry a representation I',, of G. The set of all
polynomials in x,y,z,... with complex coefficients form a ring
Rix,z,...] that is naturally graded by degree. The polyno-
mials of degree k also carry a representation of G which may
be identified with the fully symmetrized component of the
tensor product {T,, }*. These polynomial tensors may be de-
composed into the direct sum of irreducible representations
of G and the number of times the irreducible representation
I, appears in this decomposition is given by the coefficient
of 2 ¥ in the Taylor series expansion (known in the math-
ematical literature as the Poincaré series) of the following
generating function’'s:

Nt
BT, Lpd) == 3 - (1)

=~ det(1 —AA4,)
where N is the order of G, N, is the number of elements in the
conjugacy class s, y,. the character of this class in the repre-
sentation I', (* denotes complex conjugation), and 4, is a
matrix in I",,, representing any element of the class s.

The set of all polynomials invariant under the action of
G form a subring J of R that is also graded by degree. This is
known as the ring of invariant polynomials of I",,. The gen-
erating function (also known as the Molien series) for the
number of linearly independent invariant polynomials of de-
gree k in J is given by B(T",,T",,,4), I, being the identity
representation of G. These generating functions for all the
finite subgroups of SU(2) have been computed in Refs. 7
and 16. In the cases T and I they take the forms

TABLE VI. Generators of TT for each irreducible representation. Here A
and A, correspond to the two permutations (123) and (12)(34) under the
identification of TT with A, and o = &#™/>.

1

Ya 0
0

1 1 i 0 —

& (7)(“'1)[1 —i] [—i 0
1 NI 0 —i

Ye (7)”2“ +0 [1 —i] [—i 0

4 o
& (%)a(l+i) [: —ll] [—i Ol

A

s

(=~
- O O
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ry i 14 Ty i Vs
T, i Vs r, ! Vs
r, 1 Ya Ty i Ye® VY,
T, i Ya® 7 T ! Vs®Ve® Vs
I i Ya® V3072
vi: 1/(1=4), (2a)
Ya¥s 1/(1-47), (2b)
Voo (14+A8)/(1 =22 (1 =A%) (1-1%, (2¢)
and
T: 1/(1-A4), (3a)
1+4 15
F ,F H s 3b
P (1A =291 -1 (39
]+/l 10
r,: , 3
A= AHA - AU -AH(1 1% (%)
5 6 7 12
. 14+A°4+24°+4A74+4 (3d)

(1—AHA=AH2A-AH(1 =A%

We now make the following definition (see Ref. 17 for a
recent review).

Definition: A set B ={i,,...,J;}, where i.eJ, 1<s<], is
called an integrity (or polynomial) basis of J if every ele-
ment of J may be written as a polynomial in this set.

In general this expression for a general invariant in
terms of an integrity basis is not unique. This nonuniqueness
is measured by syzygies which are defined as follows.

Definition: Given an integrity basis B = {i,,...,i,} a non-
zero polynomial p such that p(i,,...,i;) = Ois called asyzygy.

Note that two polynomial expressions for an invariant
differ by a syzygy.

In the case of representations of finite groups it is always
possible to choose an integrity basis B such that the form of a
general invariant and the independent syzygies have a par-
ticularly nice form.

Definition: As above consider a representation I',, of a
finite group G, and let T",, have dimension k. Then a good
integrity basis B is one such that B=B,llB, (disjoint
union), where B, = {1,,....I, } are called free invariants and
B, = {E,,...E,_ .} are called constrained invariants and we
have the decomposition

J=C[L,..I; 1o EC[],. . I;]®..0E _C[],..1I].
In other words, every icJ may be written in the form
i=po+Epi+...+E _ (P (*)

where the p;, j =0,...,/ — k, are polynomials in the free in-
variants 7,,...,J;.

Since each product E E_, 1<r<s</ — k, is an element of
J, from the above definition we have

ErEs - (qO +E1¢I1 + .. +El—kql-—k) =0a
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for some set of polynomials ¢; , 1<j</ — k, that will depend
on rand s. It can be shown that any other syzygy may be built
up from this basic set.

There is usually a certain amount of choice as to the
elements of B; in most cases a possible choice of their num-
ber, type, and degree can, however, be found from the rel-
evant generating function. To each factor (1 — A ) in the
denominator of the generating function we associate an ele-
ment I, of degree k and to each term cA *in the numerator we
associate ¢ linearly independent elements E; of degree k.
This information is of great help in suggesting how to search
for syzygies and invariants. In particular it allows us to know
when we have found the whole of B.

As an example consider the representation y,. From the
denominator of the corresponding generating function we
deduce that there are three free members of B of degrees 2, 3,
and 4, which may be chosen to be’

{2y =x*+y*+2, (4a)
{3} = xpz, (4b)
{4} =x*+y*+ 2. (4c)

The first two of which are unique, while to {4} we may
add any multiple of the square of the second-order invariant.
For simplicity we write {a"b ™} for {a}"{b}™, etc., so that
the square of the second-order invariant is written as {27}.
The sixth-order invariant may be chosen to be’

{6} = (xX* —y») () — ) (22 — x?). (4d)

Once again this choice is not unique since we may add
multiples of {23}, {3°}, and {42}. Since the numerator of
(2¢) contains only A ¢ we deduce that {6°} must be express-
ible in terms of the other elements of B. This syzygy takes the
form

—2{4%} + 5{4*22} — 4{42%} + 36{43%2}
+ {25} — 20{3%2} + 108{3*} = — 4{6%}. (5)

In this example we have just a single constrained invar-
iant and hence the situation is quite simple. In practice, how-
ever, there will exist several constrained invariants and the
situation will be more complex. To illustrate the points that
may arise, suppose we have three invariants a, b, and c that
satisfy the syzygy (we assume that g, b, and c are going to be
in our integrity basis)

a+b"+c"=0.

Now consider a general polynomial in g, b, and ¢. This is an
invariant, but clearly in general its expression in terms of a
polynomial of @, b, and ¢ will not be unique. For example, we
may eliminate any one of a”, b ", or ¢" in favor of the other

two variables. Suppose we choose a”, then we have expressed
an arbitrary invariant / in the form

i=po(b,c) +pi(bcla+ " +p,_,(bec)a" L

Choosing B, = {b,c} and B, = {a,d....a" "'} (assuming
that there are no other nontrivial syzygies satisfied by a, b,
and c) defines a good integrity basis. This raises two points:
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fist we could have chosen B,={ab} and
B, ={cc%...c" '} or B, ={a,c} and B,
= {b,b%,...,b "~ '} as good integrity bases. In this sense our
original nontrivial syzygy a" + 6" + ¢" = 0 is more funda-
mental than our choice of basis. For this reason in our results
we have given a set of independent nontrivial syzygies and a
possible choice of invariants (which is, of course, far from
unique). The second point is that certain trivial syzygies
arise once one has made a choice of B. The reader may have
noticed that it was claimed above that a complete set of inde-
pendent syzygies was given in the case of a good integrity
basis by the products E,E, of the constrained invariants,
whereas in this example we started with just a single syzygy,
but obtain #n — 1 constrained invariants and consequently
their products. The solution to this apparent problem is of
course that the constrained invariants are related by being
powers of a single invariant. To be more precise if
r+s=xn+y (1<y<n — 1) then the product of E, =a"
and E; = &*is simply

E’Es =aras___ ar+s= (an)xay

=(—b"—-c")a=(-1{—-135)E,.

These trivial syzygies may be determined easily after one has
made a choice of integrity basis and we shall not discuss
them further.

By using the result’

B(T',I', [ ;A4,) =3 B(I,TA)B(CETA,),
(6)

the Molien series for any reducible representation may be
calculated, and hence the integrity basis found. The integrity
bases for the representations of T that occur in the branch-
ings from the irreducible representations of I are shown in
Table VIII. In this table we adopt the convention that the
representation ¥, acts on the indeterminate p, ¥, acts on g,
and 7, acts on the three indeterminates x, y, and z. This
convention is adhered to in the case of the direct sum
7, @ 73 ® ¥, and hence the invariants of this representation
are polynomials in p, g, x, y, and z. In the next section we
express the icosahedral invariants in terms of these tetrahe-
dral invariants.

V. METHODS AND RESULTS

In principle, the icosahedral invariants we wish to calcu-
late may be found directly by using the following procedure.

For any particular degree first construct the most gen-
eral homogeneous polynomial P(x,y,z,...) in the variables
Xx,),2,... . This polynomial will in general contain a large
number of arbitrary parameters c;. For it to be invariant
under icosahedral transformations we require that, for each
generating element 4 of I,

P(x,y,z,...) = P(D(A)x,D(A)y,D(4)z,..), )]

D(A) being the matrix representing 4 in I,,,, which acts on
X,),Z,... as a linear transformation. Equating the coefficients
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TABLE VIIL. Integrity bases for the tetrahedral group representations occurring in the branching of irreducible icosahedral group representations.

Representation Free Constrained

72 (3}=p none

Vs {3})=¢ none

Ya {2}=+py+7 {65} = (X =Y (P =) (2~ xP)
{3} = xyz
{4} =x'+y'+2

V227,97, {20} {2} =pq
{3} {3} = (P + 0y’ +*F)q
{3} B =+ + Y
{30} {3‘|}= (x2+0y2+0222)p2
{4,} {4} = (X + & + o) ¢

{21}

{5} =(x*+0y*+ 072y
5=+ +az'yp
{322|}y{322|}

{6,} _

{333.433}

{52,1.43,2,}
{6,2,},16,2}}

of each monomial in the variables x,y,z,... yields a large num-
ber of homogeneous linear equations for the ¢;. The solution
of this set then yields the most general invariant of degree 7.

In many cases this calculation is not difficult to perform.
For the present case, however, the computations involved
would be formidable. Fortunately a number of steps may be
taken to simplify the problem. The first of these is to make
use of the tetrahedral invariants of Sec. IV.

Since T C1, any polynomial invariant under the icosahe-
dral group must also be invariant under the tetrahedral sub-
group. Hence each icosahedral invariant may be written as a
sum of tetrahedral invariants of the same degree. The most
general sum of tetrahedral invariants of any degree may be
found from Table VIII for each irreducible representation of
I. Furthermore, since two of the generators of I generate the
tetrahedral subgroup we only have to impose invariance un-
der the third generator to ensure invariance for the whole of
I. The number of arbitrary coefficients is further reduced by
calculating first the invariants of lowest degree and exclud-
ing products of these invariants when finding those of higher
degree.

Finally we note that it is usually inefficient to expand the
whole of Eq. (7) in order to generate the required linear
system as this leads to a large number of dependent equa-
tions. A better procedure is to specialize some or all of the
variables x,y,2,... to particular values (usually roots of uni-
ty), thus generating a smaller number of hopefully indepen-
dent equations. This procedure can be systematized'®; how-
ever, the icosahedral case is sufficiently simple that a few
trial choices lead more quickly to the desired set of indepen-
dent linear equations for the coefficients.

Although these steps reduce to a large extent the
amount of work involved in finding the required invariants,
the result is still far from a hand calculation. We have thus
made use of the computer algebra system MACSYMA. The
results of this calculation are given in Tables IX, X, and XI.
In these tables the symbol [n] denotes an nth degree icosahe-
dral invariant (if necessary additional labels are used to dis-
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tinguish invariants of the same order) and the tetrahedral
invariants are as in Table VIII. As above the notation
[r°m?®] is used for [n]°[m]°. In the case of I'; (Tables X
and XIII) {1} is used to denote an indeterminate, ¢ say, that
is left invariant by the action of the tetrahedral subgroup.
This corresponds to the fact that the identity representation
of T occurs in the branching rule of ', in Table VII.

When classifying the invariants of I'; we have found it
useful to introduce “symmetric” and “antisymmetric” in-
variants. The former are denoted with a subscript s and the
latter with a subscript a. They differ in their transformation
properties under the Z, transformation given by

P—q, q—p, T—0°, O*—o0.

The symmetric invariants are left unchanged by this
transformation, while the antisymmetric representations are
multiplied by — 1.

The syzygies satisfied by these invariants (for I'5 those
syzygies of degree <14) were found in a similar manner by
equating the most general polynomial in the elements of B of
some particular degree to zero and then solving for the un-
known coefficients. The results of this calculation are given
in Tables XII, XIII, and XIV.

As was noted above the distinction between free and
constrained invariants is to a certain extent arbitrary, the
more important thing being the nontrivial syzygies. For con-
venience, however, we give here sets of constrained invar-
iants consistent with the syzygies of Tables XII, XIII, and
XIV:

TABLE IX. The integrity basis for the representation I';; that of [; is ob-
tained by substituting 1 — o for w.

21 ={2}
[6] = (4w — 2){6} + 22{3%} + {42}
[10] = 3{6]{4} — 8{4%2} + 9{42%} — 256{43%} + 128{3%27}
[15] = [6] (15{432} + 290{3°} — 11{323}) — 225{4°3} + 425{4?322%}
— 80{43°2} — 270{432°} — 9728{3°} + 54{3°2%} + 58{32°}
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TABLE X. The syzygy satisfied by the invariant [15] of the representation
I'yand I,

TABLE XII. The syzygy satisfied by the invariant [ 10] of the presentation
T,

80[152] + S0[10°] — 550[10%622] — 66[10725] + 450[ 106°2]
+ 360[10672°] + 2458[10627] — 740[102'°] — 135[6°]
—215[642°] — 1200[6°2°] — 776[622°] — 2625[62'2]
+1495[25] =0

r,r, [15],
I-‘4 [IO]’
Ts [51 [6], [6.1, [7:]. [7.5:].

In the first two cases it is clear that these particular
choices are fairly natural; for the representation I's, how-
ever, the situation is less clear-cut. In particular it should be
noted that the 12th-order invariant is somewhat special. For
this case there are no new invariants of this order, but the
four products [7,5,1, [6,6, ], [67],and [6Z ] are related by
three independent syzygies that may be used to eliminate any
three. We may thus choose any of them as the 12th-order
invariant. Of course, this procedure also depends on the pre-
vious choice of lower-order constained invariants.

VL. OTHER CONSTRUCTIONS

In this section we would like to describe some other
methods of calculating the integrity bases of I that do not
make use of the tetrahedral subgroup.

The invariants of the three-dimensional representations
T, and T'; are long well known.*'® They are constructed by
making use of the fact that it is via these two representations
that the icosahedral group acts on the icosahedron. For
more details the reader should consult Table III and Appen-
dix D of Ref. 19.

The integrity basis of I, may be found by making use of
the isomorphorism 7= A;CS; and the theory of symmetric
polynomials. Quite generally any symmetric group S,, has a
permutation representation P, that may be realized by the
permutations of a set of indeterminates x,,x,,...,x,, . This rep-
resentation is the direct sum of an irreducible (n — 1)-di-
mensional representation and a one-dimensional identity
representation. Labeling these representations by partitions
in the usual way we have

P,=(n)e(n—11). (8)

TABLE XI. The integrity basis for the representation I',.

[21={2}+ {17}

(31 = —2/5{3} — [2]{1} +2{1%}

[4] = 5{4} + 18{2]{1?} + 6[3){1} — 23{1°}

{51 =10[{41{1} — 80[3]{1%} — 25[2%]{1} — 160[2]{1%} + 256{1°}
[10] = 2[41{6} — 5[2%){6} — 32{61}[3] — 96{613}[2] + 256{61*}

— [5*] — 60[5°32] + 40[5%4%2] — 180[5°432] — 380[5%423)
— 210[5%3%22] + 916[5°2°] + 160[54°3] — 1760[ 54*322)
— 2520[543°2] + 6520[5432*] — 1728[53°] + 6940[53°2%]
— 7800[532°] — 32(4°] + 560[4*2%] + 720[4°322] — 3800[4°2¢]
+ 540[473*] — 5600[4%322%] + 12 500[422°%] — 2700(4342%]
+ 14 500[43°2°] - 20 000[42°] 4 3375[32%] — 12 500[3%27]
+ 12 500{2'°} + 2000(10?] =0

In the case of S; the representation (4,1) under restric-
tion to I yields the single irreducible representation I',,. Poly-
nomials in the x;’s that are invariant under permutations are
called symmetric polynomials and it is well known that the
integrity basis consists of » free invariants of degrees 1 to n.
Convenient choices are the elementary symmetric polyno-
mials e,,...,e, , the complete symmetric polynomials 4,,...,4,,,
or the power sum symmetric polynomials p,,...,p, .2’ There is
also a relative invariant given by Vandermonde’s determi-
nant

D, = det(x} /) = [J(x; — x;)

i<j

of degree in(n + 1). Under restriction to A,, D, may be
considered to be a constrained invariant whose square may
be expressed as a polynomial in the other elements of the
integrity basis.

Thus for the representation I'y ® I', of I we may choose,
for example, p,,...,ps and D5 as an integrity basis. Clearly the
vector (1,1,1,1,1) generates the one-dimensional invariant
subspace. On restriction to the orthogonal subspace the in-
variant p, = x, + *** + x, vanishes and the other invariants
provide the required integrity basis of I',.

We may obtain the integrity basis of I'5 by considering
another permutation representation, this time of S,. This is

TABLE XIII. The integrity basis for the representation I's.

[2,]= {%0} + 2{21} _

[3a] = {31 - 3|} + 3{32 _ 32}

[3,]= {jl + 3|} + {32 + 32} - 4{30}

[4,] = {45} — 2{4, + 4,} — 6{23} + 4[2,]{2,}

(5.1= {§| - 5|} - 2[2s]{§2 - 32} — [3a]{2I} + 5{3221 - 322|}

[51=1{5+5}- 2[2,1{3, +3,} - [331{21} + 7{3221 +3;2,}

+ 12{3021} _

[6,] = —21{4,1{2,} + 8[2,1{4, + 4,} — 32(2,1{2}} + 23[221{2,}
+28[3,1{3,} — 48[3,1{3, + 3,} — 192{3,3, + 3,3}
—16{32} + 43,143, — 3,} + 80{32 + 32}

(6,1 =6(c — o) {6} ~ 23[3,1{3, — 3,} + 72{3,1{3,}

—284{3,3, — 3,3,} — 17(3, ]{52 +3,}
+70{3; — 33} +8(2,]{3, - 4,}

(7,1 = 70221430} — 4(3,2,1{2,} — 32(2,1{3:2,}
~2[5,1{2,} + 4[3,1{2}}
+64{3,22} — 2[3,1{4, + 4,} — 16{3,3, + 4,3,} — 5[4,1{3,}
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TABLE XIV. The syzygies satisfied by the constained elements of the integrity basis of I's.

36(7,3,] +506,4,] —7[6,27] — 375[5;] — 9(57] — 240[5,3,2,] — 5[4,3]] — 31{4,3]] + 5{372] + 7[312]] =0

— 480[7.4,] + 672[7,22] — 10[6,5,) — 200(6,5,] — 128[6,3,2,] — 64(6,3,2,]1 — 456{5.4,2,] — 755{5,3%] + 35(5,32] + 720([5,3,3,]
+ 552[5,23] + 600[423,] — 1680(4,3,22] — 1024[332,] + 1024(3,322 ] + 1176[3,2¢] =0

—24(6,5,] + 50[6,5,] + 16[6,3,2,] + 360[5,4,2,]1 + 319[5,31} — 175[5,37] — 144[5,3,3,} — 72[5,2]] + 24{4}3,] + 48([4,3,2]]

—56[322,] + 5613,322,1 4 24{3,2*1 =0

576(7,5,] + 9216[7,3,2,] — 64[62] + 976[6,4,2,] — 450[6,32] — 18[6,32] — 144(6,3,3,] — 1424[6,23] — 19 200[522,]
+5328[5,4,3,] — 15 120[5,4,3,] — 1008[5,3,22] + 8880[5,3,22] — 3456[4}] + 8640[4222] + 176[4,322,] — 11 840[4,322,] — 6912[4,2¢]
+63[3%] — 2871[34] + 2808[3232] + 14 656[322}] + 2576[322}] + 1728(2¢] =0

— 4320[7,5,] — 13 824[7,3,2,] — 50[62] — 2280[6,4,2,] — 719[6,32] + 485[6,32] — 72(6,3,3,] + 2760[6,2}] + 144 000[522, ]
+1512[5,4,3,] — 1800[5,4,3,] — 6264[5,3,22] + 94 680[5,3,22] — 960[4,322,] + 13 560[4,322,] — 1085[3*] — 2552[3¢] + 3637[323?]

— 1560[3223] — 2112[332}]1 =0

2304[7,3,2,] + 5760[5,5,2,] + 10 440{5,3,22] + 1944[5.3,2?] — 1080[4,3,3,2,] + 3672[3,3,2}] + 7200[7,5,] + 40[6,6, ]
+320[6,32] — 248[6,32] + 234{6,3,3,] — 72[5,4,3,] — 2520[5,4,3,] — 1467[323,] + 1467[333,] =0

—40[7,6,] + 5856[7,4,2,] — 3020[7,3?] + 140[7,32 ] — 8544(7,2}] — 334[6,4,3,] + 2106[6,3,2?] + 2560[6,5,2,] + 8[6,4,3,]
+ 808[6,3,22] + 1920(5,5,3, ] + 432[5,42] + S088[5,4,22] + 8640[5,322,] + 960[5,322,] — 6864[5,2*] + 28 800[523,] + 9600(5,3,3,2, ]
— 7320[423,2,] + 703(4,33] + 2177[4,3,32] + 20 928[4,3,2?] + 12 123[3%22] — 13 083[3,3222] + 14 952[3,2%] = 0

96[7,6,1 + 57617,3,3,] + 640[6,5,2.1 + 2[6,4,3,] + 202[6,3,22] — 120(6,4,3,] + 168[6,3,22] + 3456[5,5,3, ]
+1152(5,3,3,2,] — 9600[523,] — 2160[5,42] + 3744[5,4,22] + 5120(5,322,] — 10 112[5,322,] — 1008[5,2¢] — 600[423,2,] — 569[4,323, ]

— 7[4,33] + 960[4,3,23] + 2435[323,22] — 2243(3222] — 168[3,2}] =0

144(7?] + 576(7,5.2,1 + 1152[7.4,3,] + 80[6,5,3,1 + 18[6,42] + 212[6,4,22] + 360{6,322,] + 40[6,322,] — 286(6,2¢] + 576(6,5,3,]
+192[6,3,3,2,] + 1008[5,4,3,2,] + 1944[5,3%] + 72[5,3,32] — 720[5,3,2}] — 15 360[522%] + 144[5,4,3,2,]1 — 1520(5,323,1 — 496(5,32]
—10032[5,3,23] — 1521[4232] — 111[4232] + 4342[4,3222] — 1270[4,3222] + 2880[3%2,] — 2632[32322,] — 2729[322¢] — 248[3%2,]

+137[3228) =0

TABLE XYV. Alternative conventions for TT irreducible representations.
We include the partition notation which allows contact to be made with the
standard notations of the representation theory of the symmetric group®'
and the notations used by the Atlas of finite groups.”

" (4] Ys (41
72 2’1, Ye (311,
1) 2°]_ Iz 31~
Ya [31]

TABLE XVI. Alternative conventions for II irreducible representations.
Notation as in Table XV.

r, [5] la | 53, 2a
T, [31%], 3a T, (51~ 2b
r, [31%]_ 3b Ty (321 4b
r, [41] 4a r, (417 6a
o [32) 5a

TABLE XVII. Alternative conventions for TT conjugacy classes. Notation
as in Table XV.

C, (1%
C, 2%
G Gan,
Ca 1) _
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possible because of the fact that there exists a nonstandard
embedding of A in S, such that the restriction of the repre-
sentation (5,1) is I's. To obtain the generators of A, in this
representation consider the action of the icosahedral group
on an icosahedron. Joining each opposite pair of vertices of
this icosahedron we obtain six lines permuted by the action
of the icosahedral group. Consider in plan view the situation
is as follows:

The two arrows represent the action of two elements of
the icosahedral group, one of order 5 and one of order 3,
which hence generate the whole of I. Their effects as permu-
tations on the lines joining the vertices (numbered 1t0 6) are
(23456) and (123)(465).

We may rewrite the form of the generating function for
I'5 in the form

I+ )0 4+ x° +2x° 4+ x7 +x'2)
(1-x) (A=) —x)(1—x)(1 —x%)
Thus as for I'y we may take the free intervals as p,,...,ps. The

C. J. Cummins and J. Patera 1744



TABLE XVIII. Alternative conventions for II conjugacy classes. Notation
as in Table XV.

(of (1) 14
& (5)., 54
c, (5) 5B
C, 2*n 24
c, (31%) 34

constrained invariants are, however, much more complicat-
ed. Although it is possible to find all invariants of the re-
quired degrees by demanding invariance under the two per-
mutations (23456) and (123) (465) there does not seem to
be a natural choice as is the case for the other representa-
tions.

To summarize, we have in this paper investigated the
polynomial invariants of the icosahedral group. The integri-
ty basis for each irreducible representation has been found
by making use of the invariants of the tetrahedral subgroup
T of I. We have also indicated how the geometry of the icosa-
hedron and the use of permutation representations may also
be used to construct the integrity bases in a different manner.
In conclusion we note that a number of different conventions
are available for labeling the irreducible representations and
classes of I and TT. Some of these are summarized in Tables
XV-XVIII.
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The two-dimensional space-time realizations of the Lie algebra of SL(3,R) are obtained, when
the group acts as the maximal point symmetry group of any given one-dimensional Newtonian
linear system. It is shown that these realizations are isomorphic with the realization of the Lie
algebra of the projective group in the plane. Next an active point of view is introduced, and

SL(3,R) is interpreted as a group of mappings that transform one admissible world line of the

system into another. Thus a new mechanical realization of the s1(3,R) algebra comes to the

fore. Some miscellaneous examples are included.

I. INTRODUCTION

In a previous paper' we have solved the converse prob-
lem of similarity analysis>* for finite point symmetry trans-
formations of any inhomogeneous ordinary linear differen-
tial equation of the second order. In that paper, the
eight-parameter realizations of the symmetry group were
obtained in the form of conjugated diffeomorphisms of the
form & ~ ' ,%, where F stands for some parameter-free
transformations of the (#,x) variables (which depend exclu-
sively on the fundamental solutions of the equation), and
where Z, is an arbitrary projective transformation in the
plane. In this fashion, without recourse to the Lie algebra, it
was shown that the full point symmetry group of all such
equations corresponds to SL(3,R) indeed. (This fact seems
to be not so well known to most physicists,* although it fig-
ures in the literature® and, moreover, it was a fact well
known to Lie himself.>)

Notwithstanding this fact, we wish to remark that the
main interest of our previous work on this issue'® stems from
its usefulness in classical mechanics as well as in quantum
kinematics.” In effect, we have obtained in Ref. 1 a technigque
for calculating the specific finite realizations of SL(3,R) for
any given one-dimensional linear Newtonian system, in
terms of a set of basic solutions of the equation of motion.
{(We have been unable to find this technique in the current
literature.) Hence in this article, as an indispensable comple-
ment of our previous work, we tackle the problem of finding
the physically meaningful realization of the Lie algebra of
SL(3,R) [i.e., sl(3,R)] for a given linear system in two-
dimensional space-time.® Since the motivation underlying
this paper is the same already formulated in Ref. 1, we would
like to refer the reader to the Introduction of that paper.

The organization of this paper is as follows. In Sec. II we
obtain the desired space-time realizations of s1(3,R ), and we
compare them with the realization of the Lie algebra of the
projective group within the present formalism. Next, in Sec.
11, we adopt the active point of view and interpret SL(3,R)
as a group of mappings that transform one admissible world
line of the system into another. Thus a new mechanical real-
ization of SL(3,R) comes to the fore, which takes place in
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the classical state-space of the system. Then we get the gen-
eral realization of the associated sl(3,R) algebra in this
space. Section IV contains some miscellaneous examples of
our technique.

Il. SPACE-TIME REALIZATIONS OF si(3,R)

In Ref. 1 it was shown that the full point symmetry
group of the general second-order linear differential equa-
tion

L(Hx=x+L£0)x + [(OHx = fo(1) 2.1
becomes realized by the following local diffeomorphisms of
the space {£,x}:

- (q‘u,(t) + () + ¢ ~ up(t))),
q'u (1) + ¢8(x — up(2)) + uy(2)
, qu (1) + ¢°uy (1) + @(x — up(1))
- 7 8
q'u (1) + qx —up(t)) + uy(2) (2.2)
_ q'u, (1) + Quy(1) + ¢'x — up(1))
Xuy |1 > 3
q'u (1) + qix —up()) + uy(1)
+u [7__1 (qlul(t) +q3“2(t) +q2(x — up(t)))] .
i q'u, (1) + ¢8x — up () + uy(1)

Here u,(t) and u,(t) are two linearly independent solutions
of the corresponding homogeneous equation, L(#)x =0,
and u, () is a particular solution of Eq. (2.1). The function
7~ ! denotes the inverse function of 7(¢) = u,(t)/u,(t), and
the g’s are the eight parameters of SL(3,R). (For details, see
Ref. 1.) Indeed, in Ref. 1 it was proved that this rather formi-
dable scheme of transformations entails a local, albeit finite,
realization of SL(3,R) over the configuration space-time
arena of the system whose equation of motion is (2.1). In
order to handle these transformations in an easy manner, we
had better introduce a change of variables, say

t=u,(t)/uy(t), X =(x—up(t))/uy(2). (2.3)

(This is, in fact, an ¥ transformation, according to the ter-
minology used in Ref. 1.) Hence upon substitution of (2.3)
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into (2.2) these diffeomorphisms read, briefly,

PR (q‘?(t) + ¢2(1x) +q’)
144740 + ¢2(tx) )’
= 1D + @20x) +¢°

14+ ¢'1(1) + ¢°%(1,x)
[By the way, in this fashion it becomes apparent that Eq.
(2.2) corresponds to the conjugations F ~'Z,% of the
projective group 2, of the plane {z,x} by the local, param-
eter-free diffeomorphisms .# defined in Eq. (2.3). Cf.

Theorem III in Ref. 1.]

We next discuss the general Lie algebra of the point
symmetry group of Eq. (2.1) from the standpoint of this
formalism. Clearly, in this endeavor one considers the mon-
oparametric transformations of variables obtained from Eq.
(2.2) to the first order of approximation in the parameter
one handles. Now Lie’s operators Z,(¢,x), a = 1,...,8 (at-
tached to the infinitesimal transformations in the present
realization of the group), are given by

2.4)

u,(t') +up(t’).

Z,(t,x) =1,(,x)d, + 6,(t,x)d,, (2.5)
where one has
7 (tx) = lim (ai) £ (%),
e\ (2.6)

6, (tx) =lim (—a—) x'(tx;q),
aq°

q—e

as usual. The point e denotes the “identity point” in the
group manifold, which, in the adopted parametrization of
#, has coordinates ¢'=¢ =1, and ¢’=¢g’=¢"
=¢® =q’ = ¢® = 0. Therefore, applying these standard
manipulations to Eq. (2.4), we obtain the generators in the
following form:

N =é—‘(2¢5,,1 + X6, + 6, —?2607 —%8,4), (2.7)
0, = Uy (B0s + %8s + 805 — 188, — 176,5) — 2,7,

wherefrom the desired realization of the Lie algebra immedi-
ately follows. In fact, we get

Zl =ﬁ_l a, ‘—u2ﬁ_1£1 ax,

Z,=%"19, —u,t ~'%%, 4,,
Z,=%7'9,—u,t'%,9,,

Z,=u,td,,

o (2.8)
ZS = uUxx ax’
ZG - u2 ax,

Z,= —1%7'9, + u,k( ~'%, — 2)9,,
Zy= — 1719, +u,k(H %, — %)4,.

In the applications one substitutes from Eq. (2.3) into these
expressions and thus one obtains the Z operators in terms of
(t,x). The final, completely general, form of these operators
is exhibited explicitly in Table I.

With the aim of obtaining the Lie algebra obeyed by
these operators, it would be rather lengthy and cumbersome
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TABLE 1. Point symmetry realization of sl(3,R) for X + ;% + fix = f,.
The Wronskian w = #,u, — u,i, corresponds to the independent solutions
u,(2) and u,(?), when f; = 0, and u, (¢) is a particular solution of the inho-
mogeneous differential equation.

z, 7,(t,x)3, + 6, (,x)d,

Z, w ' {u, 9, + (i (x — up) + uyt2p)d, }

z, w ' (x — up){uy 3, + (ix(x — up) + uy0,)d,}
z, w™ ' up{u, 8, + (ity(x — up) + upu,)d,}

Z, u g,

Zs (x —up)d,

Z, u,d,

z, —w u{u, 9, + (i, (x — up) + uitp)d, }
Z, —w e — up){u, 3, + (i, (x — up) + u,itp)3, }

to work out their commutators directly from Table I. So we
shall follow a general approach already used in one of our
previous works on this issue.® Since the Lie algebra must be
of the form

[Za’Zb] = zbzc, (2.9)

it follows that the structure constants /¢, have to be consis-
tent with the following identities:

f:bnc = [ﬂa’nbl] + [0a977bx]9

(2.10)
2bec = [naiebt] + [ea’ebx]’

where, of course, the square brackets denote antisymmetri-
zation of the indices @ and b only. [ Let us note that Eq. (2.9)
is not an ansatz, since we are certainly handling a Lie group
and the algebra must be finite and closed. ] Hence according
to Egs. (2.3), (2.4), and (2.7) a straightforward calculation
yields

Na = (é)—h[(iaal + %64, — 22?5(:7

— (% +1%,)8,5) — .},
Nax = (uZ?) - 1{542 - ?6118 }9

. . (2.11)

eat = uZ{(?604 + 5‘:6as - (22 + ?it )8a7 - 22'%!6118)

- ‘%tﬂat - ‘inﬂa} + “21“2_ laa’
eax = (505 - ?6a7 - 2"i‘sas) - “2-’?177” + uZilZ_ lﬂa;

in consequence, after some SthS we get

[7asM6: ] + [6asMix ]
=1"H([8,3,85, 1+ [806:652 1)

— (2[843,857] + [8a6:055 ] + [822:8551)2
= ([8a3:8558] + [8a1:852] + [822:055s )X
- ([5::1’51;7] + [“504’&’8])?2

— ([842:657] + [6as,855 ] )12}, (2.12)
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TABLE II. The nonzero structure constants of the Lie algebra associated
with the differential equation X + fox + fix = f,.

o #0
o —2[8:3:657] = [Bas:05 1 — [0a2+064 ]
2 — [8a3:858]1 = [8a14852] — [8.24005]
b [8a3:861] + [6a6:042]
pA — [8a6:057] + [8a15854 ] + [Bas0s5]
A — [8a3:867] — 2[ 06,8581 + [602:864 ]
o [8:3+054] + [6u6sFss ]
» [8a15667] + [8a4:85 ]
o [822:657] + [8ass6ps ]

and

[Wa’ebt] + [aa)abx]
= “2{( [5a3a‘5b4] + [5a6s5bs b
+ ([6a1:654] — [6a6:657]
+ [8aa:0p5 I+ ([802:054 ]
- [5a3 ’6b7] - 2[5a6?5b8 ] )X
— ([8a1:057] + [64a:0p5 ]) 2%
— ([622:857] + [Bas:05s ] %%}

_uZiz([na)ﬂbt] + [9a,771>x])- (213)

On the other hand, Eq. (2.7) yields

Sapme =}—1{f‘11b?+f‘2”"i +fib —flb?z _fgb?-%})

Furthermore, one can also obtain the infinitesimal oper-
ators Z,, a = 1,...,8, associated with the variables (2,%) de-
fined in Eq. (2.3). We next present this subject (in a rather
sketchy way, for the sake of brevity) because these operators
bring the Lie algebra of Z, to the fore and, therefore, throw
light on the algebra obeyed by the Z,’s. As was shown in Ref.
1, if one introduces the column

v = (3,%,1) (transposed)
= (u,(2)/uy(2) (x — up(1))/u,(2),1)(transposed),

then the diffeomorphisms (2.2) are consistent with the pro-
jective transformation

v = ¢(v;q)M(q)*v = (M(q)*v)/(M(q)V)s, (2.16)
where
¢ ¢ ¢
M) =|q¢* ¢ ¢°|, (2.17)
g ¢ 1

and where, clearly, (M(q)+v); stands for the third row in
M(q)+v. Of course, by being “consistent” here we mean that
v’ corresponds precisely to

v = (2',x',1) (transposed)

= (u, (") /uy(t'),(x' — up(t'))/uy(z'),1} (transposed)

(cf. Ref. 1 for details). Hence the generators £, of the infini-
tesimal transformations

(2.14)
vV =v+ 6¢°Q, (2.18)
and
are given by
60 = u{ fosd + fonk + [ —Fun?® — fo??} .
b 2 f b f b f b f b b ﬂa = lim (%) v =¢,(:)V+M,(;)'V, (219)
A g—e q
— %, f.m.. 2.15
2% f ab e ( ) where
Therefore, using the fact that #(#,x) and X (#,x) are indepen- 9
dent functions {cf. Eq.(2.3) ], we are in position to obtain all ¢ =lim (F) d(vig) = —v,8,; — v, (2.20)
the nonzero structure constants of the group, if we equalize e Nog
Eq. (2.12) with (2.14), and Eq. (2.13) with (2.15), and  and
then separate the coefficients of the different powers of 2, X, 5 P s
%, and X,. We present our results in Table II. For the sake of o P) al a2 Va3
completeness we also include herein the Lie algebra obeyed Mg = £1£ne (F) M(q) =|0u Ous Ous (2.21)
by the Z operators; cf. Table III. 9 87 8,5 O
TABLE II1. The well-known Lie algebra of the projective group in the plane.
Z, z, z, Z, Z. Z, z, Z,
z, 0 -2z, A z, 0 0 z, 0
z, A 0 0 —-Z, +2 -2, -z, Z, 0
A z, 0 0 Z, 0 0 —2Z,-Z, A
z, -2z Z,—Z -z, 0 z, 0 ] z,
Z, 0 z, 0 -z, 0 -z, 0 VA
z, 0 z, 0 0 z, 0 -z, —Z,—2Z,
z, -z -z, 2Z, + Zs 0 0 z, 0 0
z, 0 0 z, -z -z, Z, +22Z, 0 0
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Thus for the 2, operators, i.e., for 2,, =0,0d =09, 9
+ Q,, 9;, one gets

21=?83, 22=.ia;,

Z,=0, Zy=10, (2.22)

Zi=%38;, Z¢=20,,

Z,= —120, =3, Zy= —153, —%0,,
which are the well-known infinitesimal operators of the pro-
jective transformations in the plane. One may pursue the
analysis one step further, and show that the structure con-
stants associated with the Z operators are the same structure
constants of the Z operators displayed in Table II (as indeed
they should be). Hence the point symmetry Lie algebra cor-
responding to all second-order linear differential equations
is isomorphic to the algebra of the projective group in the
plane.

lil. WORLD LINE TRANSFORMATIONS AND THEIR LIE
ALGEBRA REALIZATIONS

It is our purpose in this section to examine the same
subject from a different point of view.

It is well known (and rather obvious) that one may in-
terpret an equation like (2.2) in two different ways (cf. Ref.
9, for instance). Either one adopts a passive viewpoint and
interprets Eq. (2.2) as a transformation of space-time co-
ordinates (that is, as a change of frame of reference), or else
one adopts an active viewpoint and interprets (2.2) as a
transformation of space-time points (i.e., as a mapping of
events). Both standpoints are logically equivalent, and both
are extremely powerful for the purposes of geometry and
mechanics. The distinction, however, is not trivial at all; in-
deed, whether one uses one or the other viewpoint depends
highly on the kind of problem one is willing to tackle.’

These relativistic features are not out of place, since here
we are dealing with the relativity theory of all one-dimension-
al Newtonian linear systems. As a matter of fact, according
to the passive point of view, the group of transformations
(2.2) defines the most general set of preferred frames rela-
tive to which a moving particle performs a well-defined kind
of motion. Accordingly, one may also interpret (2.2) as an
active mapping of events that interconverts one world line of

-the system into another. Indeed, the active transformations
of allowable world lines are worth considering for they bring
some novelties into the picture. Technically, the change
from the passive to the active standpoint means that, instead
of looking at the similarity properties of the differential
equation, one looks directly at the symmetries of the primi-
tive curves, from which the differential equation appears as
the eliminant.' This interpretation settles the problem tack-
led in this section.

According to these comments, once the explicit expres-
sions for the automorphisms (2.2) have been obtained, one
can visualize these transformations as realizations of the ac-
tive symmetry group that changes one world line of the sys-
tem into another. Thus the equivalence

x(t) = au,(t) + Buy(t) + up(t)

Sx'(t) =a'u (1) +B'u(t') +up(t’) (3.1)
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holds upon the mapping of space-time points stated in Eq.
(2.2). Of course, this means that if one substitutes from Eq.
(2.2) into (3.1), then after some manipulations one arrives
necessarily at expressions for (a',8’) of the general form

a'=A(a,Bq), B’ =B(apy). (3.2)
In other words, the curves x(¢) given by
S(t,x;9) = A(a,B;q)u\(T(t,x;9))

+ B(a,B:q)u,(T(t,x;9)) + up(T(t,x;q)),
(3.3)

witht' = Tand x’ = S as given in Eq. (2.2), are completely
independent of the parameters ¢ = (g',...,¢°) of the group.
[In fact, these curves correspond precisely to x = au,(t)
+ Bu,(t) + up(t).] Moreover, this also means that after
performing two successive space-time mappings, say

q q .
(t)-x) - (t,rx,) _’(t';x, )1

Egs. (3.2) are such that they yield, of necessity,
a" = A(A(a,B;9),B(a,B,9):9) = A (.5:8(q';9)),
B" = B(A(a.p;q),B(a,B:9);q') = Bla,Bg(d';q)),

where the group multiplication functions g°(¢q;q) = ¢”%,
a = 1,...,8, are the same functions obtained from two succes-
sive { TS} transformations.® Hence, in brief, the transforma-
tions stated in Egs. (3.2) provide us with a new realization of
the same group that leaves invariant the equation of motion.
This new realization has a place in the state-space {a,B} of
the classical system. In conclusion, in Egs. (2.2) and (3.2)
one has two groups of automorphisms, which act in the
spaces {¢,x} and {a,B}, respectively, and which are isomor-
phic indeed.

Our first problem, then, is to find explicitly expressions
for A(a,B;q) and B(a,B;q). As we have done in our previous
paper,' let us tackle this problem using a “compact” (i.e.,
matrix) notation. Thus we introduce formally the column
vectors u = (a, — 1,8) (transposed ), and we consider their
scalar product with v (previously introduced); i.e., we set

(3.4)

uT‘V=a ul(t) . X - uP(t)
u, (1) u,(2)

In this fashion our problem reduces to finding the transfor-
mations

+8. (3.5)

u’ = N(u;q)-u, (3.6)
where N(u;q) is a 3 X 3 matrix such that
wv=0ulvw =0. (3.7)

Thus we are ready to solve the problem of finding 4 and B. In
order to assure the equivalence stated in Eq. (3.1) it is
enough to assume that the scalar product (3.5) is conformal-
ly invariant:

v’y = o(u,v;g)u’vy, (3.8)
where o(u,v;q) remains at our disposal. Hence

$(v;q)u™(N"(u;q)"M(g) — 7(u;q)I)}vy =0 (3.9)
follows, where we have chosen

o(u,v;q) = 7(w;q)d(v;q), (3.10)

and where I stands for the identity matrix. Since Eq. (3.9)
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holds for all v, we conclude that the desired transformation
(3.6) is given by

v = 7(wg)(M7(g))" "u (3.11)
where, according to the definition of u, we have to require
(a, — 1,8)—(a’, — 1,8"). This requirement fixes 7(u;q),
and so we get the final answer,

— (P(g)-u)/(P(g)-u), (3.12)
where, clearly, we have written
P(g) =M"(9))"', (3.13)

and wherefrom the explicit form of the transformation (3.1)
follows. Of course, (P(g)-u), denotes the second row of
P(g)-u. Since

(M7(g")) " {M7(9))™" = (M(¢")- M),
one has

P(q¢')'P(q) =Plg(q’;q)) (3.14)
Furthermore, this fact yields
w= - P _FB@aN g
(P(g) ), (P(g(q';9))n),

as required. This result entails the fundamental property we
had already stated in Eqgs. (3.4) in a formal fashion. The
matrix P(q) is given by

P(q) = (det{M(q))) "

’—4¢¢ —-4d'+4¢¢ ¢ —oq
-¢+9¢ ¢ - q3q’ 9 —4'¢
-7 o4 —49'¢ 49 —-q¢
(3.16)

Hence the infinitesimal operators W, a = 1,...,8, asso-
ciated with the realization (3.12) of SL(3,R), in the {a,5}
space, follow immediately. Indeed, let us write

u; = P(w;q) Py (@) uy, (3.17)
instead of Eq. (3.12), where
P(w;q) = — (P (Qu,) ' = (Ppy — Pya — Py, B~
Then one has
W, = (42 + Pid)ad,
+ (¢,(:) gg)a)ﬁaﬁ +P3laa aﬁ
+ Pi;’f,ﬂ d, — Py, 38, — P35, g (3.18)
Since, finally,
Y =8,5 —ab, — B (3.19)
and
6:11 6a4 607
P,(ae) = - 6a2 5:15 508 ’ (3.20)
603 6:16 0

one obtains the operators shown in Table IV. One calculates
easily the structure constants of the algebra, which, of
course, are the same already shown in Table II. Let us ob-
serve that the realization of the Lie algebra sl(3,R) in the
classical state-space {a,B} is the same for all linear one-di-
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TABLE IV. World line realization of the “active” sl(3,R) in the classical
state space {a,B} of a linear system, i.e., x(f) = au, (1) + Buy(t) + up(2)
Sx'(t+6t) = (a + a)u,(t+ 6t) + (B+ 8B uy(t + 81) + up(t + 6t).

W, 1. (@B, + 6,(aB)3;

W, —ad,
W, —a*d, —afid,
W, —ady

W, a,

W ad, +B3d,
A s

W, -89,

Wy —afd, —B>3,

mensional Newtonian systems. On the other hand, the
space-time realizations of this algebra are specific and differ
from one system to another.

IV. SOME MISCELLANEOUS EXAMPLES

In this section we present some interesting instances of
the realization of the point symmetry Lie algebra associated
with linear one-dimensional systems. The chosen examples
correspond to the same systems already considered in Ref. 1,
which are taken from elementary mechanics and analysis.

(a) Free particle. One has X =0. Thus we take
u,(8) = t,u,(2) = l,and 4, (t) = 0. Then Table I yields im-
mediately

Z, =148, Z,=x4,
Z,= an Z,= taxa

4.1)

Zi=x0,, Zy,=4,,

Z,= —t*3, —tx3,, Zgy= —txd, —x*4,.
Clearly, this corresponds to the familiar realization of the
algebra of the projective group in the plane, as a glance at Eq.
(2.22) shows neatly. This case entails a trivial check of the
formalism. Also, in this particular case, it is very easy to
check the form of the operators W, (,B), shownin Table IV
for the general case.

(b) Free falling particle. Now we set X + g = 0. Thus we
have, for instance, u,(t) =1, u,(¢) =1, up(t) = — gt?,
wherefrom Table I yields the following operators:

Z, = t(d,

_gtax), ZZ (x+%gt )(a _gta )1

Z,=9, Z,=19,,

= (x+1gt?)d,, Z,=9,,

—gtd,,
(4.2)
Z,= —1t%9, —t(x —igtH)a,,

—(x+ 1Dt d, + (x — igt*)d,).

Of course, any other admissible choice for the u’s corre-
sponds merely to a reparametrization of the projective group
and, therefore, induces a new basis for the realization of the
sl(3,R) algebra.

M. Aguirre and J. Krause 1750



(c) Simple harmonic oscillator. For the equation
X% 4+ o’x =0, we take u,(#) = sin wt, u,(t) = cos wt, and
up(t) = 0. Thus we have

Z, = (1/w) (sin wt){(cos ot)d, — w(sin wt)x 3, },

Z, = (1/w)x{(cos wt)d, — w(sin wt)x 3, },

Z, = (1/w) (cos wt){(cos wt)d, — w(sin wt)x d, },

Z,= (sinwt)d,,

ZS =X ax,

Zy= (cos wt)d,,

Z,= — (1/w) (sin wt){(sin wt)d, + w(cos wt)x d, },

Z;= — (1/w)x{(sin w?)3d, + w(cos wt)x 3, }.

These operators are equivalent to the infinitesimal oper-
ators obtained in Ref. 6, within a suitable reparametrization
of the group.

(d) A forced harmonic oscillator. Let us consider the
inhomogeneous equation of motion X + w’x = f; sin 2,
where f; is a constant. We take u,(¢) =sinwt, u,(t)

=coswt, and up(t) = — (fo/(Q® — @?))sin Qt. In this
fashion, we obtain from Table I the following infinitesimal
operators:

4.3)

Z = l (sin wt) {(cos wt)d, — w(sin wt)x d,
o

_ Qzﬁ) 5 (8 cos ¢ cos ot + w sin ¢ sin wt)ax] ;
-

1 Je
Zz=z(x+92 @?

sin Qt)

X [(cos wt)d, — of(sin wt)x d,

- szo 5 (Q cos Q) cos wf + w sin Ot sin wt)ax} )
—w

Z; = L (cos wt) [(cos wt)d, — w(sin wt)x J,
w

— fo () cos Qi cos wt +cosinﬂtsina)t)ax],

Q? —o?
Z, = (sin wt)d,,
/. ' (4.4)
Z;= (x + o _‘i g sin Qt) d.,
Zy = (cos wt)d,,
Z, = —% (sin wt) [(sin wt)d, + w(cos wt)x d,

_ szo 5 (Q cos Qi sin wt — @ sin Qf cos cot)ax] R
—

Zy = ——1—(x+ Jo

) 0 — o?

sin Qt)
X [(sin wt)d, + w(cos wt)x 4,

fo

02— o

(Q cos Ot sin wt — o sin Q¢ cos m)a,] .
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Thus one has a rather formidable realization of s1(3,R).
(e) Damped harmonic oscillator. Now we consider the
equation ¥ + 2Ax + w’x = 0, for which we set

u,(t) = e~ *cos N,
with Q = Jw? — 172, and u, () = 0. So we get the operators
Z, = (1/Q) (sin Q£){(cos 021)4,
— (A cos Q¢ + Qsin Q1)x 3, },
Z, = (1/Q)e*x{(cos N1)3,
— (A cos Qt + Qsin Q1)x 3.},
Z,= (1/Q)(cos Q1){(cos Q2)7,
— (Acos Qi + Qsinwt)x 3, },
Z,=e *(sin Q1)d,,
Z,=x4d,,
Zi=¢e *(cos )3,
Z,= — (1/Q) (sin Q2){(sin Q1)4,
— (A sin Qr — Q cos D1)x 3, },
Zg= — (1/Q)x{(sin 22)4,
— (Asin Qt — Q cos Qe)x 3, }.

(f) Falling particle in a viscous media. Now let the equa-
tion be X + Ax + g =0, with u,(£) = e~ %, u,(¢) = 1, and
up(t) = — (g/A)t. Thus

u, () = e~ *sin Qt,

(4.5)

2 A
1
Z=——’“( :"-z)(a,—ia),
A G PG
Z, = —ieﬂ'(a,—iax), Zi—e-4a,
2 A
(4.6)
Zs=(x+£z)ax, Z,=4,,
A
i
z=—m{_a‘_(_g_ it)a},
AR I ORI e
i
amferf o (renei)o]
=TT FERR I A

(8) Inifinitesimal operators of X+t ~%x—t ~*=0. Al-
though not very interesting from the point of view of me-
chanics, we did consider this equation in Ref. 1 as an exam-
ple of a linear differential equation with time-dependent
coefficients. We take u,(¢) = t,u,(¢) =t ', up(t) =0 (i.e.,
t =0 is a regular singular point). In this way we readily
obtain the associated infinitesimal operators:

Z,=4(t3,—x3,), Z,=4"'x(t1d,—x34,),
Zy=1t"*(t3,~x3d,), Z,=13,,
Zi=xd,, Zs=t"'4d,

Z,= —M*t3,+x3,), Zy= —Mx(t3, +x3,).

4.7)

All these examples correspond to realizations of
sl(3,R), with structure constants as given in Table II (cf.
also Table III).
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The branching rules for unitary highest weight representations of Virasoro and super-Virasoro
algebras that contain a subalgebra with central charge ¢ = 1 are presented. These rules are
useful for identifying points of higher symmetry in two-dimensional critical systems with ¢ = 1

and for the analysis of a defected Ising chain.

I. INTRODUCTION

The investigation of two-dimensional critical systems
with second-order phase transitions' has recently been sti-
mulated by the discovery that their spectra at the critical
point in the finite-size scaling limit can be described by uni-
tary highest weight representations* of the Virasoro algebra
7., which is given by’

[LnL,)=(m—n)L,, ,+ (c/12)m(m? —1)8,,, .0 »
(1.1)

where c is the so-called central charge. For the discrete se-
ries? with c< 1 this is achieved by finitely many irreps,
which, in general, is not possible for systems with ¢> 1. How-
ever, it may then happen that infinitely many irreps collapse
to asingle irrep of a larger algebra simultaneously indicating
a higher symmetry.>%’ From the mathematical point of
view, this phenomenon corresponds to the branching rules
between the irreps of the two algebras. Conversely, these
branching rules are necessary to check a conjectured higher
symmetry for validity.

Recently, several systems with ¢ = 1 were analyzed that
depend on a parameter, e.g., a defected Ising chain,®° the
Ashkin-Teller quantum chain,®'° and the XXZ-Heisenberg
chain.!' Here, several points of higher symmetry exist. For
example, at the Ising decoupling point of the Ashkin-Teller
model one has the direct product of two Virasoro algebras
with ¢ = 1, and for certain values of the coupling constant
the spectra are given by irreps of the super-Virasoro alge-
bra.5!2

In what follows, we derive the corresponding branching
rules for unitary irreps of several algebras that contain a
Virasoro subalgebra with ¢ = 1. We are only interested in
unitary, highest weight irreps, which means L} =L _,,
and the existence of a unique (up to normalization) state |A)
with L,,|A) =0, for m>0, and Ly,|A) = A|A). This A is
called the anomalous dimension.

The paper is organized as follows. In Sec. II the double-
Ising scenario is investigated, where 77, is considered as a
subalgebra of 77, ,, X 7" ,,. Section III covers the U(1)
Kac-Moody algebra together with the bosonic and fer-
mionic oscillator representations of 7”,, which play a central
role in ¢ = 1 systems. The N = 1 superconformal algebra is
discussed in Sec. IV while all other cases are briefly treated in
the concluding section (Sec. V) in a simple, unified manner.
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il. THE DOUBLE-ISING SCENARIO

Let us first consider the direct product 77, X 7~ of two
(commuting) Virasoro algebras with the same central
charge c¢. Then, the sums of the generators, namely
L,=L{’+ L, build a subalgebra that itself is a Vira-
soro algebra, however, with central charge 2¢. For the case
¢ = } we will now derive the corresponding branching rules.
As is well known"? irreps of 77, X ¥, ,, are labeled by a
pair (A,,A,) of anomalous dimensions where each A, sepa-
rately can be 0, |, or k. The unitary irreps of 77, are labeled
by a single anomalous dimension (A), which can be any
non-negative real number.

To proceed, we need the characters xZA (2), forc =}
and ¢ = 1. With the abbreviation

< 1

v (@ ,,,111 1—z7’

we have, for c = (see Refs. 4 and 5),

XY/Z,O (Z) —_ Z(Zl2n2+n _212,.'-'+7n+ l)nv (Z) ,
neZ

2.1)

v 172 1202 — 5 1222
X212 (2) =2'2 ¥ (2127 30— e By (),
neZ

v 1/16 127 = 2 1202 4 10n + 2
XV2106(2) = 2" Y (@I (2) .
neZ

(2.2)
For ¢ = 1, the general formula reads*®
xa(®) = [ZAEIV @ if Agm'/d,
' 2741 =zt Y 1y (2), if A=m%4,
m integer, m3>0. (2.3)
By means of Jacobi’s triple product identity,*
I a-2ma +xz2'"—‘)(1 +iz2"'-‘)
m=1 X
=Y xz", x#0, |z<1, (2.4)
neZ
and Watson’s quintuple product identity'’
M a-zma —xzz"')(l —izz"'—Z)
m=1 X
X(l _ x224m—2)(l — izzﬂtm—z)
x
___zzn(3n+l)(x3n_x—3n-—l)’ x:)_éo’ iz|<1,
neZ
(2.5)
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one finds for the characters of Eq. (2.2) the formulas

XY/z,o (z2) = 2 Pl "My (),

neZ

X (2) = Z I (), (2.6)
neZ
2 (2) =21 I a+zm,
m=1
and, furthermore, the useful identity
XY/z.o(Z) :tXY/z,l/z (z2) = H (1272, 2.7)

m=1
The character of the irrep (A,,4,) of 77, X ¥ 5 is
nothingbut ¥}, , (1) X124, (2,) - Identifying z, and 2,, i.e.,
2z = z, = z,, the product can be transformed in order to de-
termine the character of the corresponding reducible repre-
sentation of 7”,. For (A,,A,) #(0,0) or (4,4), we have

v v _ 1/16)(8n 4 1)?
X120 (@ X1 20016(2) = 3 2 "+ (2),
neZ

w
v v — 1/2)(2n + 1)
X120 (DX 1212 (2) = z z "ty (2)
n=0

(2.8)

A4 v — (1/16)(8n + 3)?
X12172 (D)X 1721016 (2) = z z "L (),
neZ

o0
v v — (1/8)(2n + 1)?
Xin1n6 (D X1pane(2) = Y 2 "Iy (2)
n=0

The cases (0,0) and (},}) require a more subtle calculation
because 77, irreps (A) with A = m?/4, m integer, arise in
the decomposition. Here, it is advantageous to start from Eq.
(2.2) and to use the identity (|z| < 1)

er(m2 + 17 + s(m+n)

m,neZ
1 P47y sk K+ Lyr(k® + 12) + sk
= — (f“ +I1H+ +(=1) y )
2 k,%z
(2.9)
before going to product form. This way one obtains
X120 (2) X120 (2)
- [ 32 3 A —z4"+')]nv(z) :
n=1 n=0
X212 (@ xV2,102(2)
= [ i 2" 4 i @+ (1 -—z“"+3)]Hv(z) .
n=1 n=0
(2.10)

From Egs. (2.8) and (2.9) one can directly identify the
irreps of 77, by means of Eq. (2.3), which yields the branch-
ing rules

0,0) iy = %1 em®) e %0((2m)2),
(0,) Ly, = O;Z(T%(Sm + 17,

04) 15 = %(ﬁ(zm +1)?),
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(o) 45, ;io(ﬁ(z"’ +D7), (2.11)

(&3) Ly = Gzz(%e(SM+ 3)?),

W) b, ® Qme e (@m+1)Y.

Note that these resuits are unique as a result of the conver-
gence of the power series involved.

The relation to the bosonic and fermionic oscillator rep-
resentations of the Virasoro algebra are discussed in Sec. II1I.
Let us, at this point, briefly discuss 77, as a subalgebra of
7”12 a case that occurs in the treatment of a defected Ising
chain.®® Let L, , meZ, generate 7", ,,. Then the new genera-
tors

R, =1L,, + 48,0 (2.12)
define a Virasoro algebra withc = 1, 77, that is a subalgebra
of 77, ,,. Substituting ¢ = 2% in Eq. (2.6) one gets the branch-
ing rules

(0) Ly, = @ 2n*+4n+4),

Wi, = 3(2n2+gn+;,), (2.13)

(&) 4, =@ (/H(n+ 1)+ &)= o ((4m+ 1)%/16) .
n>0 meZ

The shift } results from R, and is explicitly seen in the spec-
trum of the defected Ising chain. Since on the right-hand side
of Eq. (2.13) no irrep with A = m?/4, m integer, occurs the
conformal tower always has the standard degeneracy given
by Iy (¢).

IH. OSCILLATOR REPRESENTATIONS OF 7", AND THE
U(1) KAC-MOODY ALGEBRA

Let us begin with a formula that immediately follows
from Eq. (2.3):

z X},,(l/4)(m+2k)2 (z2) =29y (2) . (3.1)
K=o

This is related to the bosonic realization of the Virasoro alge-
bra with ¢ = 1. There, one has the Sugawara structure’'®

1
L,=—>)»:T,_,T,:, 32
m= Z,z (3.2)
where : : denotes normal ordering, together with
[T..L,}=mT, ., [TmT,]=mb,  np- (3.3)

In fact, this defines a U(1) Kac-Moody algebra, where the
Hermiticity condition is assumed tobe 7'} =T_,, (and
hence L} =L _,,). Since

Lo=%T3+ > T_ Ty,

k=1

(3.4)

one obtains A = @ ?/2 for the irreps where the charge @ is the
real eigenvalue of T, = T ;. Here @ labels the irreps of the
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U(1) Kac-Moody algebra, the corresponding character is
given by

AoV (zy) = tr(zy™) = 2272711, (2) . (3.5)

Taking y = 1, acomparison of Eq. (3.5) with Egs. (2.3) and
(3.1) yields the decomposition into 7", irreps,

(A), if A#m*/4,

un; -4 «
@7 = & ((m+2Dh¥4), i A=m4,
1=0

(3.6)

This formula has been derived previously'” without refer-
ence to the simplifying Kac-Moody structure.

At this point, we will shortly discuss the properties of
the twisted U (1) Kac-Moody algebra,”'® which is obtained
from the untwisted one [Eq. (3.3)] by taking 7, (ueZ + })
instead of T',, (meZ). The Sugawara construction then gives

1 1
L, =— T T, i4+—36,0 -
2 uedTh2 row 16 ™
The contribution of 4 to L, is necessary in order to match the

commutation rules. As a consequence, one obtains

1
L0=1_

6 LT

meN,, A=lp?.

3.7)

T_,T,. (3.8)
Because no zero mode is present, we have only one irrep with
the fixed anomalous dimension A = J, labeled ()5 ". Its
character (see also Refs. 7 and 18) is given by

YIV(2) = tr(z) = 2V/16 i g (M)Z™2, 3.9)
m=1

where 7,44 (m) is the number of partitions of m into odd
integers. By means of the corresponding generating func-
tion'® and of the triple product formula (2.4) one finds

PO =2 ] —

—1
e —zm /2

___zl/lﬁl‘[v(z) ﬁ (1+zm—-1/2)(1 __22"1)

m=1

- E PRADICEERNE | W (3.10)
ez

which simultaneously yields the branching rule into irreps of
the Virasoro algebra [please note the coincidence with Eq.
(2.13)]:

()70 1y, = ® (f(4n+ 1)?

— 2 2
—&(ﬁ(8m+ 1) )eameeaz(ﬁ(8m+3) ).
(3.11)

The twisted U(1) Kac-Moody algebra (3.7) leaves us
with a curious situation. Although L, has a very similar
structure in the untwisted (3.4) and the twisted (3.8) case,
respectively, the irrep (&)5" decomposes into infinitely
many Virasoro irreps with the full degeneracy [given by
Il (z) ]—a phenomenon that never occurs in the untwisted
case [cf. (3.6) ]! For the occurrence of U(1) Kac-Moody
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structures in statistical systems with ¢ = 1, the reader is re-
ferred to Refs. 7, 18, and 19.

Before we turn to the case of higher symmetries, let us
shortly comment on the fermionic oscillator representa-
tions. For ¢ = J, they are well-known (e.g., Ref. 16 and refer-
ences therein) to be

L, =L

2 peZ + 172
for the Neveu-Schwarz sector (a) =a_,, {a,,a,}
=6, ,0),and

©a,_,a,:, (3.12)

L=y ra, a:+-16,,, (3.13)
2 =

16
for the Ramond sector (a," =a_,, {a,,0,} =6,, o).
Equation (3.12) contains the irreps (0) and (4) while
(3.13) contains two copies of the irrep (&) due to the
Z,-zero mode a,, (since g, is not in the Cartan subalgebra, we
have, strictly speaking, a degenerate highest weight repre-
sentation). By the sum of two generators, e.g.,

L=+

" 2 4T
(where we assume {a " ,b,} = 0) one obtains a Virasoro rep-
resentation with ¢ = 1 and a content of irreps that can be
read from Eq. (2.11) adding the contributions of (0,0),
(0,3), (3,0), and (4,}). In fact, we can build a complete U(1)
Kac-Moody algebra by means of

uta, _,a,:+:b,_,b,:) (3.14)

T,=i Y a,_,b,
peZ + 172

with the property that the L ’s of Eq. (3.2)—though quartic
in @ and b—coincide with those of Eq. (3.14) because they
have the same matrix elements. Completely analogous argu-
ments are valid for the other combinations of Eqs. (3.12)
and (3.13). Two copies of the Ramond sector result in an
irrep content corresponding to 4 (£, ) while a combination
of one Ramond with one Neveu-Schwarz generator builds
twice the irrep (£)5" of the twisted U(1) Kac-Moody
algebra [cf. Egs. (3.8)-(3.11)].

(3.15)

IV. THE N=1 SUPERCONFORMAL ALGEBRA

Let us now consider the Ramond and Neveu-Schwarz
algebras defined by Eq. (1.1) together with (cf. Refs. 2, 4,
and 5 and references therein)

[Lm;Gr] = (m/2 - r)Gm+r ’
{G..G}=2L, 4+ (c/3)(P =18, .-

This is a supersymmetric extension of the Virasoro algebra
where meZ and either r,seZ (Ramond case) or r,seZ +1
(Neveu-Schwarz case).

Obviously, the generators L,,, meZ, build an ordinary
Virasoro algebra with central charge ¢ with respect to which
the unitary irreps of the super-Virasoro algebra
(L} =L_, G} =G_,)decomposecompletely. Of spe-
cial interest are the cases where ¢ takes one of the discrete
values ¢ <} for the super-Virasoro algebra? since this again
results in a quantization of the possible anomalous dimen-

(4.1)
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sions A. In what follows, we focus againonc=1 (¢ =01s
trivial and ¢ = , is treated completely in Ref. 20).

For a derivation of the branching rules, we need again
the character formulas of Goddard et al.> Let us first investi-
gate the Ramond case. With the abbreviation

M@ =[] == d+2m @,

m=1 - m=1

we obtain by means of Egs. (2.4) and (2.5)

(4.2)

R 1724 127 1277 + 12043
X124 (2) =270 Y (277 — 22 DTG (2)
neZ

=Y e (2), (4.3)

neZ
R 1/16 2 2n? 1
Yone(2) =z / Z(ZIZn +n__ l2nt 4 In+ Mg (2)
nez,
v v
= X120 (2) X 121116 (2)

=Y VoG DI (2), (44)
neZ

R 16 2n* 12n? 3
X1.9/16 (Z) — 9/ z (Zl n +5n_z n®+ 13n + )HR (Z)
neZ

v v
= X17212 (2 X 112,116 (2)

1/1 3)2
— zz( /16)(8n + )HV (Z) R
neZ

(4.5)

X117:3/8 (Z) — 23/8 z (212,.2_4n — zlzn1+8n+ l)HR (Z)
neZ

= 3 emant (), (4.6)
m=0

From these formulas one can directly read the following
branching rules:

AL = & (4(6n+ D3,

()" s, = & (&(8n + 1)),
4.7)
) s, = g(ﬁ(8n+3)2),

@R 1y, = ;io(g(zm + 1)),

Let us now turn to the Neveu—Schwarz case where we
define

M (z) = ﬁ 142772 ﬁ (1 42"~ 12)-10, (2)

NS l_z"' \'2 .
m=1 m=1

4.8)

From Eq. (2.7) and the characters of Goddard et al.’ it is
easy to calculate

122 — 12n% + 10 2
X?ff/ls(z) =‘21/162 (Z " Zn_z n* 4+ 101 + )HNS(Z)
neZ

= XY/2,1/16 (Z){XY/z,o (2) + XY/Z,I/Z (z)}

=Y 710G (2) (4.9)
nez
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Simultaneously, this proves the formula
Yhivie(2) = xtine(2) + X11{,9/16 (2)

= X120 (2 XV 21016 (2) + XY/z,l/z (Z)XY/Z,I/M (2).
(4.10)

For A =, one has—by means of Egs. (2.4) and (2.5)—

NS 1/6 12n° 4+ 3 1207
,1’1,1/6(2)=Z/ E(Z ni+3n 120 +15n+4+|/2)HNS(Z)
neZ

— z (2(1/6)(6n+ 1)? +z(2/3)(3n+1)1)nv (z)
e (4.11)

The remaining characters (A =0and A = 1) read

NS 12n* — 120 + 5 172
52 =3 (@2~ (2),
neZ

(4.12)

NS 20— 2
Xl,l (Z) — 2 (Zl n n+1 _212n +lln+2+l/2)HNS(z) .

neZ

Instead of a direct calculation, it is advantageous to deter-
mine the sum and the difference of these characters. From
Eqgs. (4.12), (2.2), and (2.7) one gets

)(E(S) (2) _Xll\f? (2) = ()(Y/z,o (2))? — Y/Z,I/Z (2))

=Y (" =zt (2), (4.13)

neZ
while for the sum one finds, with the substituting ¢ = i z'/4,

X6 (@) + x5 (2) =Y ¢~ Pl (2)

nez

— z (z6n2 +26n2+6n+3/2)nv (Z) .
neZ
(4.14)

Combining the last two equations we obtain the formulas

Xfcs)(z) = [ i P i Z/@n+ 1

n=1 =0

+ z z4n2(1 _z4n+1)]r[v(z) ,

:=0 & (4.15)

i = [ 2 27 4 D LD @n 1y
n=0

n=1

+ i z(2n+1)2(1 ____Z4n+3)}nv(z) .

n=0

From Egs. (4.9), (4.11), (4.15), and (2.3) we can extract
the branching rules for the Neveu—Schwarz algebra

01, = & (6kHo & G2k+ 1Yo & (4k?),
k=1 k=0 k=0

(D1, = & 6k e & (G2k+1Ye o ((2k+1)?),
k=1 k=0 k=0

(4.16)
()N, = ® (#(8n + 1)} e ® (f:(8n + 3)?),
WML, = ez(%(6n +1?e fz(gon +1)?).
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V. CONCLUDING REMARKS

In the treatment of quantum spin chains with ¢ = 1 one
finds the N = 2 rather than the N = 1 superconformal alge-
bra,%!1-182! which stems from the underlaying bosonic struc-
ture. Hence one also needs the decomposition of N =2 ir-
reps into N = 1 irreps and into U(1) Kac-Moody irreps,
which is implicitly given in several publications (e.g., Refs.
22 and 23). Since this is also related to the representation
theory of shifted and twisted Kac~-Moody algebras®*?* we
can refer the reader to another publication’ where the occur-
rence of higher symmetries in systems with ¢ = 1 was dis-
cussed in terms of irreps of in general still unknown algebras,
labeled by the quotient p/g of two coprime integers. It was
claimed that for every positive rational number such an alge-
bra exists [in fact, p/q = 1 is the SU(2) Kac-Moody alge-
bra, p/q = } the N = 2 superconformal algebra, p/q = | the
double-Ising algebra, and p/g = 3 corresponds to the Zamo-
lodchikov-Fateev invariance.?

The vacuum representation (0)”’7 of the (conjectured)
p/q algebra was given explicitly in terms of irreps of the
U(1) Kac-Moody algebra,” which is contained as a subalge-
bra,

<O)P/q= 2Z( [zp/qm)U(l)

[here, T, is always taken with the normalization of Eq.
(3.3)]. All other irreps are considered either as a shift of
(5.1), namely,

<p>P/q___ %(fzp/q(m+p))U(l)

(wherefrom the branching rules are obvious), or as a repre-
sentation of the rwisted version of that algebra. This irrep can
only be (116)‘;.’ 7 [cf. (3.8)] but it contains two copies of
(&)5" because of the existence of a zero mode not con-
tained in the Cartan subalgebra.

At this point, the treatment of algebras with ¢ = 1 seems
to be rather complete. However, one should resolve the re-
striction to ¢ = 1. Unfortunately, the branching rules for
¢> 1 become much more complicated because there the mul-
tiplicities of the 7", -irreps arising explode. One then needs
more complicated techniques to face the problem of missing
labels, which will be interesting in itself.

(5.1)

(5.2)
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It is proved that for arbitrary m,neN, and a > 0, 5> 0, there exists an integral representation
|x|™ |y|" exp( — a|x| — B |¥]) = S, xwKnn (SS1)eXp[ — (s + it) |x|* — (s — it) |y|*1d(s,1),
x,peR?, where K, (5,t) is a singular distribution in Z'(R) ® .Z"(R).

I. INTRODUCTION AND LEMMA

While trying to construct solutions of the time-depen-
dent Hartree-Fock equation' the following problem oc-
cured: Let x,yeR’, let |x| = (x3 4+ x2 +x%)'/?, etc., let
E=s+iteC, C=s—it, and let p(|x|,ly;s0)

=exp( — £ |x|> — £ |y|?). Does there exist then a distribu-
tion K,,, with supportin R, X R so that for m,neN, ( = nat-
ural numbers including zero) and >0, £> 0,

|x|mlylne— alx| — By — J K., (s,z)P( |x|,|y|;s,t)d(s,[)?
RZ

By using Fourier transformations it can be shown that this
problem is equivalent to the following one: Let p,geR, and let

AR =[A+pP) (e +¢)]7,
A=a% u=p>~
Does there exist then a distribution G with support in
R, XR so that

f0qh) =f G(s,)p(p.gs,)d(s,1)?
R

The lemma below will answer this question in the affirma-
tive.

First let us define our notation: & (R) and 2 (R) will
denote the (locally convex) spaces of test functions with
compact support which are infinitely often differentiable
and of entire analytic functions, respectively; Z'(R) and
Z'(R) denote the corresponding dual spaces (cf. Refs. 2
and 3). By ® we shall denote the heaviside function:
O(1) =0 for t<0, and O(¢) =1 for t>0. Thus 6 ()
=d*+'0(2)/dt* ', keN,, denotes the k th derivative of the
Dirac distribution concentrated at the origin.

Lemma: For A >0, u >0, and (p,q)€R?, let

PP =[A+pP)(u+¢)] " ()

Then there exists a distribution GeZ'(R) ® &'(R) with
support in R X R so that

[P = J G(st)
RZ

xexp[ — (P> + ¢%)s — i(p* — ¢*)t 1d(s,2).
(2)

The distribution G is explicitly given by

1758 J. Math. Phys. 29 (8), August 1988
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G(s,t) = (2/1r)®(s)e““—”"j r~Isinh(st)e* dr  (3a)
R
=4®(S)e—as—ibt
X Z( _ l)k52k+15(2k)(1)/(2k+ 1)!’
O<k
) (3b)

wherea=1 +u, b=4—pu.

Il. PROOF OF THE LEMMA

We shall construct G(s,t) in a straightforward manner
and then verify (2). Writing x,=p% x,=¢% z, = x, + iy,,
and z, = x, + iy,, the function f{x,,x,) has an analytic con-
tinuation f(z,,z,) that is analytic for all y,, y, and all x,
> — 4, X,> — p. Let us make the following substitutions:

Uy=X,+ X3 Uy=p +Y, W=u +iv;
Uy=X|— X3 V=Y —Y W=+,

Thus for real p,q,
uy=p>+¢>0, u 4 u, =230, u, — u,>24".

Assume now a distribution G with supportin R, X R to
exist so that

S(z1,2) = 4[24+ w, + w,) (2u + w, — wy) ]!

= J G(s,t)e "~ d(gt)
RZ

= J G(s,t)e " Hstvalg—ilust+u:l) g gy,
RZ

Inverting (formally) the Fourier transformation one ob-
tains

(27)°G(s,t)e“ + o

d(v,uy).
(4)

(0is + D)
- 4J;l’ QA+ w, +w;) Qu +w, — w,)
Since in the end we shall verify our result and, besides, do not
claim uniqueness, this procedure is justified. Let
b=24+u,+u,=2(A+p*) >0,
by=2u+u, —u,=2(u+¢%)>0.
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By the residue formula,

ivys

e

L= —-—
T h2+w +w,

dv, =270 (s)e™ &+,

I, =f S S— dv, = 270 (s)e™ (5=~ "s,
R 2/.‘ + wl - w2

Partial fraction decomposition of the integrand in (4) yields
(217)2G(S,t)e — us+ Ut

ltﬂz
_2f (11—12 ————du,
- 2

(l+y+u.)s

= 87®(s)e™
XJ‘ sinh[ (w, +4 — p)s] i, i,
R A—p+w,
= 8@ (s5)e ~ (9t u)sg— Ub+ vt

w0 + vy .
X f 7 !sinh(s7)e" dr, (5)

— o + iy
wherea = A + u,b = A — u.Consider aregularization such
that the last integral in (5) is replaced by

o + ivy
I(st) = f e !

— o0 + i

R + iv,
= lim [U +f +f )
R—o R + iv, R

X e~ "7~ 'sinh(sr)e™” dr], £>0.

sinh(s7)e" dr

One has, for R,veR,

R 4 iv
f e~ "7~ 'sinh(s7)e” dr

R

f e CR+I(R 4 jr)~!
0o

X sinh(s(R + ir))e" R+ dr

{v]

<e~“*’ cosh(sR) (RE4 72~ V2”1l gy
0

<[|v|R ~'e~ R cosh(sR)e™ *1* 0, for |R |- oo.

Thus in the distribution sense

G(s,t) = (2/m)O(s)e =~ lin; I(s0)

-2 O(s)e— o~ f 7 'sinh(s7)e"™ dr. (6)
r R

The function A(z) =z~ sinh(sz) is, for each seR, entire
analytic, hence we can expand it in a Taylor series and inte-
grate termwise. The result is

o _ 1)k32k+16(2k)(t)
G(s,t) =40(s)e— =t ( .
¢ 027( 2k + 1)

Before verifying (2) we shall prove that G
eZ'(R) ® Z'(R), thereby showing that the infinite sum
(7) makes sense. Let Y.Z (R), a(s) =40(s)e~ *, and
(— 1)k32k+ 15(2k)(t)

(2k + 1)! ’

(7

Gy(s,t) = a(s)e™ ™
olTLN

A short calculation yields
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(Gn(s,),9) Ef Gy (5,)Y(2t) dt
R

=a(s) 2 CN,_,' (s)¢(j)(0)r

02N
where ¢ ” =d’y/dt’ and
_ b)2k Js2k+l
v ()4
O<;<N( ) (2k+1)!
= —i(—ib)~I-1(jn~!

CN,j (s) =

XY (sbY**+((2k — 12k + 1))

J/2<k<N

b
= —i(—ib)_j—'(j!)”‘r 7!
o

X 2k —PY) " 'dr
V2<k<N

[using the convention (}*) =0 forj> 2k].
From this it follows that

Ci(s) = }im Cy,;(s)

sb
= -—i(—ib)"“(j!)"f vIh;(r)dr,
0
where
hj(T) = [

Partial integration yields (4 )=

cosh 7, for j even,
for j odd.

=dh;/dr)

sinh 7,

IC()|<[BP*"(G+ D" (sbY* ', (sb)

sb
—J- 7/ (T)dr
0

2s/tieltl/(j4+ DY, 5>0.
Consequently,

(GCs).9)l = lim [(Gr(5.).¥)

J+ 1| gD
<80(s)e=te-tope 3 SO
o (J+ 1)
Since ¥ is entire analytic there exists a finite positive
constant A, such that

sup |¢(0)|<4,,.
0<j
Further, if c = 2 min(A,u) then

O<a—|b|=A4+pu—|A—-ul=c
Thus for arbitrary ¢e<Z (R),

" e = lbbs i’L'I_MOll_dS.
(Goopi<s [ e s(o|g 0

<8A,,,J. e e —1)|g(s)]| ds< o.
0

Hence GeZ'(R) ® Z'(R) and supp(G) CR, XR. To
verify (2) let
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g (s,) =4(— D [2k+ 1!
X@(s)e‘ (a+u.)sszk+ le—i(“2+b)'5(2k)(t).

Then g, (s,t) is, for each keN,, an integrable distribution,
and

f g0 (50d(s,8) = 8w, + @) ~2[ (1, + B)/(y + @) 1%
RI

Since
Uy +b=p" —p—(F-A<pP+u+¢d+i=u+a,
one has |u, + b | <u, + a. Thus

J G(s,t)e "~ M d(s,1)
RZ

= llm z f gk (S,l) d(S,t)
R

N- oo gk N

1760 J. Math. Phys., Vol. 29, No. 8, August 1988

M__b 2k

u, +a
=4(u, +a) {1 — [(uy + )/ (u, + a) }?}!
=4[(u;+a+u, +b)(u, +a—u,—b)1~!
=4[ +uy + u,) 2 + 4y — )17}
=[A+P @+ =)

This proves the Lemma.

=4(u1 +a)_2 z [
0<k
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A new approach to the solution of nonlinear differential equations of mathematical physics is
presented. Continued fractions are exploited to convert a power series of a solution into a
closed form expression that yields an excellent approximation to the exact solution. These
solutions contain the appropriate number of arbitrary constants to accommodate boundary
conditions. The method is also shown to be capable of generating certain exact solutions.
Evidence is provided for the conjecture that the known exact solutions are members of families

of exact solutions.

I. INTRODUCTION

Nonlinear differential equations play a central role in
modern theoretical physics!; yet the solution of these equa-
tions is one of the most difficult problems for the mathemat-
ical physicist. Numerical methods are difficult to validate
and at best provide numerical solutions, containing no arbi-
trary constants. One is faced with a multitude of ad hoc
methods for constructing solutions in closed form. One
would like to systematically generate in closed form solu-
tions that contain an appropriate number of arbitrary con-
stants. Various techniques such as WBK or saddle-point
methods are useful for first approximations but successive
approximations are extremely complex. Recent work®? has
been pursued using continued fractions in a nonperturbative
iterative technique for generating approximate solutions of
nonlinear field equations. It has been shown that in at least
one case’ the continued fraction can be summed to obtain an
exact solution. The purpose of this paper is to extend this
technique and present some new results on physically inter-
esting nonlinear differential equations.

One can construct a solution in the form of a power
series with little difficulty, but power series in general repre-
sent a solution only in a small neighborhood. A possible way
to extend the neighborhood is to use Padé approximants.* In
this paper, we introduce an alternative to the Padé approxi-
mant method that extends the domain over which the func-
tion adequately approximates a solution. This alternative ex-
ploits continued fractions to convert a power series into a
function that represents the solution faithfully over a larger
domain. The new function is found to be a very good approx-
imation to the solution of the differential equation. In addi-
|

flx) = @+ auX +apx’ +ax° + -
oo + Go1X + AgpX” + A% + -+
1
Qo oo + Go1X + dgpX’ + ° - Gy
ap  apt+apx+apx’4 - a0

) A portion of this work was presented at the Lepton—Photon conference,
Hamburg, West Germany, 1987.
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tion, the function contains one or more arbitrary constants
which can then be fixed by boundary conditions.

In Sec. II, we describe the method by which continued
fractions convert power series into a function with a larger
radius of convergence. In Secs. III and IV, we construct ap-
proximations to two known exact solutions of a nonlinear
differential equation using the continued fraction technique.
We discuss the accuracy of the method and the relation of
the boundary conditions to the arbitrary constants. In par-
ticular, we show that the currently known exact solutions
are members of families of solutions that differ from one
another by the value of an arbitrary constant. In Sec. V, we
use this technique to construct an exact particular solution
to a nonlinear differential equation.

Il. THE METHOD

In this section, we show how to use the information pro-
vided by a power series to construct a function with a larger
domain of convergence. For this we rely heavily on Kho-
vanskii.> Consider the power series Y = £=_,a,x". Then

iln Y=£= i na x"“(i a x")_l @.1n
dx Y n=0 " " ' .

n=0

which is just the ratio of two power series. Thus, formally,
Y=exp [fdx Y'/Y]. One could expand the integrand in
powers of x to integrate, but this would only reproduce the
original series representation for Y. However, we can trun-
cate the series for Yand expand Y '/ Y asa continued fraction,
which when summed and integrated yields an approxima-
tion for Y that is more accurate than the original truncated
power series. Let

2.2)

® 1988 American Institute of Physics 1761



210

+x (a10801 — Aopf11) + (a30802 — Aoofn) X +

a
® dio+ @y X + apx* + -
- a0
Qoo + X azo+“21x+azzxz+
ap+apx+apx”+ -
- 0
Qoo + X 4
80+ X (az0a1) — @1o821) + (G021 — Q1g@p)X + “ -
Ay + @yX + @px* + -
— a0 = %10 Q0 X A3 X o, (2.3)
oo + azo: . ap t ap, 1t ay Tt
a + 30
10 azo + e
I
where we are now using the lowered plus sign to denote a  The table for x~'f(x) begins
continued fraction. The computations are conveniently set
out in the following scheme: 10 -3 0 4 O
Ao Qo1 Qo2 1 0 -3 0 &4 O 2.9)
dp 4 4p 0 -1 0 » 0 -

Gy Gy ayp (2.4)

Gy a3 4jxp

Here Cpin =8p l,Oam —-2,n+1 = Qp 2,08m — Ln+1° Thus a
particular entry in a given row is obtained by cross multiply-
ing the two previous entries in the column to the immediate
right with the two previous entries in the first column. As an
example consider

& 1 +x+ 5"2 4 e

f(-x)= ex_l =x+£x2+éx3+..'

x4+ x+ %40

= . 2.5
14+ b2 + 3%+ - @
The table for xf{x) is
1 4 3 H
1 1 i 3
-4 -1 - (2.6)
- —4
—th
Therefore
I e - A ..
fo) =x"1— L — +To A+ o
It S b o - 2.7

t + 1 + 1 + 1 +

Ifa,, = 0for k> 1, then this scheme gives division by zero.
In this case, a modification of the method is required. This is
illustrated by the following example. Let

sin(x) =x[l—gx2+§ox4+ ]
cos(x) 1— 4 gxt

flx) = 2.8)
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We modify the scheme by deleting the offending zero and
shifting the entire row to the left. The table becomes

1 0 —34 0
10 -3 0 (2.10)
-3 0 4 O

This shift is accompanied by an increase in the power of x for
the coefficient in that row. Hence the continued fraction for
f(x) will begin

"H+ —fxz + ]

If there are two or more zeros in the leftmost columns they
are all deleted, the row is shifted appropriately, and the pow-
er of x is increased by 1 for each zero. In the present example
the table becomes

1 0 —34 0
1 0 —1 0
-4 0 % 0 - (2.11)
& 0
where the last row has also been shifted. Therefore
2 2
x ¥ &x
f(x)—tan(x)—T+ 1 +T§+
X —§x2 _1153‘2
T+ 1+ 1+
(2.12)

Another possibility is when all the entries of a row vanish.
Then the continued fraction terminates. For example, let

W. L. Ditto and T. J. Pickett 1762



fix) = A+2A%x + 347+ -+
Tl A+ A A4
Note that f(x) = g'(x)/g(x), with

(2.13)

ed 1
x) = Ax)' = .
g(x) ,.Z’o( ) T ix
Constructing the table for f(x) gives

1 A A? A3
A 242 343 444 (n4 1A"H! 214
—Ar —2 3¢ —(n+ DA (218
0 0 0 [(n+1)—(n4+1]JA"*=0
I
So YW + W —-Y+Y3>=0
A —A% y)
= = . 2.15
=T+ "ok @19 or
That this is the correct value for f(x) can be seen by taking
the derivative of g(x): W +W2-1+ exp[ZI de] =0. (3.4)

s A
g0 = (1 —4x)?
and
gx) A (1—-Ax) 4

g(x) (1 —Ax)? 1 T l-Ax

1. EXAMPLE

We now show how to use these ideas to construct ap-
proximate solutions to nonlinear differential equations. As
an example, consider a nonlinear generalization' of the
Klein—Gordon equation,

%+ m*p— A =0. (3.1)
Assume Pp=¢(x), x= + il:f-)‘é, where k = (k°,l;) and
k2 = m® Here an inverted caret denotes a four-vector. This
assumption leads to the following equation for ¢:

¢" —d+ (A/mH)¢*=0, (3.2)

where the primes denote differentiation with respect to x.
Rescaling the dependent variable ¥ = (1 /m?)'/?¢ leads to
the following equation for Y:

Y"-Y+Y3=0.
Now let W= Y'/Y. Then Y = exp[§ Wdx] and

3.3)

2 g

1 + 1 +1 + 1 + 1

Ao x[1 4 (a, + a5 + a,)x* + aa,x*]

W %X ax’  ax*  ax

T 14 (a,+a+ a + a )X + (8,0, + @10, + a,a3)x*’

with the a,’s as yet undetermined.

This is a generalization of the Ricatti equation and is the
starting point of the investigation.>>® This equation can be
solved iteratively by choosing W in the integrand, resulting
in a first-order differential equation. This produces approxi-
mate (and possibly exact) solutions.® The method presented
here consists of inserting into the integrand a form for W
containing undetermined constants that will be fixed by the
resulting linear equation. The choice for the integrand is ar-
bitrary; we have found power series used in conjunction with
continued fractions to be useful. Calculationally there are
two ways to proceed. We shall illustrate these two ap-
proaches in the following two examples. In the first example,
we substitute for W a continued fraction expansion with un-
determined coefficients. In the second, we use a power series
to accomplish the same result and only introduce the contin-
ued fraction at the end of the calculation. The power series
has the advantage of calculational simplicity; the continued
fraction has the advantage that there exist exact solutions for
which Wis a finite continued fraction, but as a power series it
contains an infinite number of terms. An example of this is
shown in Sec. V.

We will construct a solution to Eq. (3.3) that approxi-
mates the known exact solution ¥ = (v2)sech(x). Let

(3.5)

(3.6)

We choose this form for W since we know Y = (v2)sech(x) is an even function of x, so W = Y'/Yis odd. This integrates

to
eXp[ZJ ao x[1 + (@, + a3 + a,)x* + a,a,x*)
1+ (a,

+a,+ a;, + a)x* + (a,a, + a,a, + a,a,)x*

[24 /(B — E) ]x2 +1 (ap[4(24 — BC) + D(B?* — 24)])/24°E

—a.| :
[24/(B+ E)]x* + 1

where

A=aa,+aa,+aa,, B=a, +a,+a,+a,,

1763 J. Math. Phys., Vol. 29, No. 8, August 1988

C=B—a,,

)

. [Ax4 +Bx2 + l][(AC—BD)/?_4’]go exp((aoD/A)xz) ,

3.7

D=aa,, E=(B>—-44)"?,
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and C, is a constant of integration. Expanding this function in powers of x and inserting it into the differential equation (3.3)
while taking Y to be of the form 2, .., b, x" gives

= i b,{n(n— 1)x"~2 —x"[1— Coll + ao x* + Jao(a, — a,)x* + ({a3 — laca, + laea, (a, + a,)) x°

+ (4as — lada, + Jadal +1d3a,(a, + a,) —Jaga,[(a, + ay)* + aas]) xB + -} .
Solving for the b,’s in the usual way gives
by is arbitrary, b, =1bo(1 —Cy)* - .

At this point it will be convenient to fix the constant C, in terms of the a,’s in the continued fraction. We do this with the help of
the algorithm in Sec. II. We have at this point

Y=bo+%b0(1—‘C0)x2+“'

and
Y =by(1—Co)x + -,
so that
WX o bU=Cr
Y bo + kbo(1 — Co)x? + ---
Constructing the table, we have
bo 0 %bo(l_co)
bo(l—-Co) 0 e ’
so that
—x - 2ol = C)/by _(1=Cyx
W_x 1 + cee 1 + ees ”

Thus we see that 1 — C, = g, is the choice that makes the series solution of the differential equation consistent with Wasin Eq.
(3.5). We can now write the results of Eq. (3.7) as

b, is arbitrary—for simplicity take by = 1,
b, = la,,

by = (ao/24)(3a, — 2),

be = (a/6!) [27a} — 30a, + 4],

by = (ay/8!) [441a) — 6844} + 252a, — 8],

b= ;_8[b8 + (@, — l){b6 +4(ap—a )b, + (iag —Yaa, +4a,(a; + ay))b,

a(3> aéal aga, acz)al
+——+— a,+a,).
24 4 8 270( 1+ az)

From this power series we construct the continued fraction for Y'/Y as in Sec. I1. We begin by creating the table (2.4):

—%((a, +a,)? +a2a3)” + (ag—1)

a 77 a, a
1 0 % 0 Bo34, -2 0 ° (2742 —30a,44) O °__(R )
2 24 O~ D) 720 2% o+ 4 20320 XV 0
g 0 -‘362(3%—2) 0 1“200(27:13—30a0+4) 0 5"" (R) 0 P
L2} a4 [
% 0 L(_6a+10a,—2) O R 0 P
3 60 o + 104, =2) 2520 °2) ? ’
a a
(92 -7y © ° (R 0 P
90( o ) 1260( 3) 3

% _py 0 P
18900  * 4
P

where the P,’s and R,’s have been abbreviated for convenience. They are

P, = 10b,,,
P, = (a3/8!) [441a} — 684a} + 252a,— 8] — P,
Py = (a3/3 - T') [441a3 — 6842 + 252a,— 8] —a, P;,
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P,=(a}/T - 45)[9a2 — 7] [ — 1264} + 237a} — 112a, + 4] — (a,/3)P;,
Py = (a3/1260 - 18 900) [ — 189a} + 204a3 — 11][63a3 — 24a3 — 49a, + 12] — (a3/90) (943 — T)P,,

R, = (441a — 684a2 + 252a,—8) ,
R, = (— 1264} +237a3 — 1123, + 4) ,
R, = (63a} — 24a; — 49a, + 12) ,
R, = ( — 189a} + 204a% — 11) .

In this table all rows except the first two begin with a zero; we have already deleted the zero and shifted the columns for these

rows. Thus the continued fraction for Y'/Y is

(a3/18 900) ( — 189} + 20422 — 11)x*

Y apx (a/3)x>  (ap/90)(9a5 — 7)x*
Y 1| + a + (a/3) +

2
Px

+ (a3/18 900) ( — 189a} +204a3 — 11) + -+’

apx ¥ H(9a; —Tx’

(a3/90)(9a%2 — 7)

[ (— 18943 + 20423 — 11)/(9a3 — T) |+

¥ _ all
Y 1 +1+ 1 +

1

[ (90) (18 900) Ps/a} (9a3 — 7) ( — 189a% + 204a, — 11) ] x>

+ 1

+ .

We have now fixed the constants @, through a, in Eq. (3.5) as functions of a,. This a, is an arbitrary constant that may be used
to meet boundary conditions [a,70 and a, must be chosen such that £ in Eq. (3.7) does not become imaginary]. To find the
solution to the differential equation we must evaluate ¥ = exp § Y'/Y dx. This has already been done in Eq. (3.7). Therefore

we have, using C; = 1 — a,,

Y=(1-— 1/2
U= /BT B+ 1

with the same identifications for 4 through E.

For some values of a, this is an approximate solution to
(3.3). This region includes @, = — 1, for at this value we
recognize Y '/Y as the first five terms of the continued frac-
tion expansion of — tanhx, which gives the solution
Y = (v2)sech(x). This is an exact solution to Eq. (3.3). For
a, = — 1 the various abbreviations become

A=313’ B=3) C=$9
D=g, E=3(133)"2.

With these values the approximate solution is

2/[14 — (133)1/2] 4 1 #7153
2/[14 4+ (133)2] 4+ 1

4 2 —77/60
X 4x _
+ 1] e x%/30 .

Y= (vz)["
X

X|—+— (3.9)

63 9

This function agrees remarkably well with (v2)sech(x).
Figure 1 compares the exact solution with the approxima-
tion while Fig. 2 shows the absolute error |v2 sech(x) — Y|.
We see that Y is a very good approximation to the exact
solution. For other values of ¢, Eq. (3.8) yields approximate
solutions to Eq. (3.3), even though no such exact solutions
are yet known. In the next section we will give justification
for the conjecture that such exact solutions exist and discuss
more fully the role of the arbitrary constant(s) appearing in
these solutions.

1765 J. Math. Phys., Vol. 29, No. 8, August 1988

[2A /(B_E’) ]x2 + 1 (as[A4(24 — BC) + D(B* — 24)]|)/44E

(Ax* + Bx? + 1)(4C— BDY/44%a oy (g Dx*/24) ,

(3.8)

!
IV. ANOTHER EXAMPLE

We now construct another approximate solution to Eq.
(3.3) using an equivalent, but calculationally simpler, ap-
proach. The continued fraction technique as described in
Sec. II is employed towards the end of the calculation after
determining the series coefficients simply by substituting the
power series into Eq. (3.3). Consider again Eq. (3.3),

Y{X)

FIG. 1. Graph of the exact [ ¥(x) = (2)'/?sech(x)] and approximate
(3.9) solutionsto ¥ * — ¥(1 — ¥?) = 0. A:exactsolutions; O: approximate
solution.
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FIG. 2. Graph of the absolute error between the exact and approximate
solutions in Fig. 1 versus x.

0=Y"-Y(1-Y?%.

Assume

Grouping together like powers of x one finds
(6a; —a,)x + (20a5 — a; + a3 ) x*
+ (42a; — a5 + 3aia;)x’
+ (7285 — a, + (3a}as + 3a,a3)x" =0.
Equating like powers of x to zero gives
0=6a;—a,,
0=20a;s —a; +a},
0=42a, — a5 + 3ala,,
0="T2ay — a; + (3a%a; + 3a,a3),
yielding
a;= (1/3Ya,,
a;=(a,/5\)[1—6al],
a;=(a,/7")[1 — 664} ],
ag=(a,/M[1— 6124} + 7564} ] . (4.3)

We now have the first five terms of the power series represen-
tation of a particular solution to Eq. (3.3). Note that it con-
tains one arbitrary constant a,. We now employ the method
of Sec. II to improve the convergence properties of Y. One
could use Padé approximants to do this if one could deter-

Y= i @, X"=a,x + a;x> + asx® + ax’ . 4.1) mine which approximant is appropriate. Our method has the
=0 advantage of providing a unique approximant for each y,
n odd and successive approximations converge to the actual solu-
Then tion.
Y3~alx®+ 3a2a,x° + (3d2as + 3a,a3)x’ . (4.2) From (4.1),
Equation (3.3) then becomes Y' =a, + 3asx* + 5asx* + Ta,x® + 9ax® .
0 = (6a,x + 20asx> + 42a,x° + 12a,x" + **+) Therefore
—(@x+ax+ax’+ax + ) _);’_ — ! [ 1 ‘il‘ 3“3"22‘*' San: + 7073:6 + 9a:x8 4
ax*+ax*+a a
+(@ix’ + dafax’ + (3aias + 3a,65)x) where all the a,,’s -1'1—av3e be_:n ls'ede_t'i—ne? s:c;h :;clat a,—a,/a,.
+ (3a}a, + @3 + 6a,a;a;) . Forming the table as in Sec. I we have
1
1 0 a, 0 as 0 a 0 a
1 0 3a; 0  Sas 0 Ta, 0 9aq
— 2a, 0 —4a, 0 — 6a, 0 —8a, — —
—6a%+4a; 0 6a,—10a;a5; O 8ay— l4a,a, — — —_ =
M, 0 M, 0 — -_ - - —
M, — — —_ — — — —_ —
where

M, =4[d}a;s — 4d% + 3a,a,],
M2 == 8 [a§a7 _ 3(1507 + 2a3d9] ’
M, = 48a3}a, + 160a,a3 — 40a3a% + 96a3a, — 64a,asa, + T2a,a6> — 272d3asa, .
All rows in the table, except the first two, have the leading zero deleted and have been shifted one column to the left. Thus the

coefficients provided by these rows will multiply x? rather than x in the continued fraction. From Egs. (4.3) it is seen that all of
these expressions are actually expressions involving @, only; we have written them in this form for convenience. Thus

Y _x' —2ax* (44— 6a3 )x Mx? Msx® (4.5)
Y 1+ 1 + — 2a, + (4a,—6a2) + M, +
We define
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6a — 4a, M, M,

A= + +
2a, 2a,(6a3 — 4a;) M1(405—-60§)
= — M,/2a,M,
C=4 -2,
p=__M —2a3( M, + M, _
2a.M, 2a,(6a5 —4as) M,(4as — 6a3)

Thus contracting Eq. (4.5) we see
Y/Y=x""[1+ Ax* + Bx*]/(1 + Cx* + Dx*),

).

Y=expf—Y7=Cox[l + Cx* + Dx

for C2—4D>0.

4](B_D)/4D 2Dx2/[C— (C2 _ 4D)”2] +1 [24D — C(B + D)]1/4D(C? — 4D)"'?
2Dx*/[C 4 (C*—4D)'?) 4+ 1

, (4.6)

Here C, is a constant of integration, but is not arbitrary; it must be chosen so that the above expression for Y is consistent
with (4.1). To do this we note that both expressions are expansions about x = 0. We see that, in Eq. (4.1),

Y
—_ =al R
Xlx=o0

while in Eq. (4.6),
Yl _c,.
X lx=0

Therefore we must choose C, = a,. [ This is equivalent to demanding that Eq. (4.6) and Eq. (4.1) have the same value for the
derivative at x = 0.] The numerical value of @, (and hence 4, B, C, D) will be determined by a boundary condition fixing
Y’(0). For example, suppose we choose a, = i/v2. Then Eq. (4.5) becomes

25x3
+ 66 °

YI x—l

- 3 -2
+ 3 +10+ 21

v 1
and

A=4, B=yp, C=x%, D= -

4.7)

With these values Eq. (4.6) becomes a very good approximation to ¥ = i tan(x/v2), which is an exact solution to Eq. (3.3):

i

Y=—x(l —]ax2+z§-&)x4)_ll9/551

— 551x°/20790[ % + (3530 '*] + 1 | 22 (1)

54549\ 25583

7

Figure 3 shows a comparison of the exact solution 7 tan(x/
v2) to Eq. (4.8), as well as the absolute error, |tan(x/
v2) — Y /i|. Again, the agreement is remarkable. The func-
tion in Eq. (4.8) can be differentiated twice and substituted
into Eq. (3.3) to see how closely the left-hand side approxi-
mates zero. This function, ¥” — ¥ + ¥3, we call the error
function for Eq. (4.8), and it is plotted in Fig. 4. This func-
tion is difficult to interpret, since one might expect the error
function to be of the same order of magnitude as the absolute
error. This is generally not true, even for very good approxi-
mations. Here, for example, at the point x = 1, the absolute
erroris ~2 X 10~7, while the error function is ~ 3. The error
function is important in investigating solutions that cannot
be expressed in terms of elementary functions. In Eq. (4.6),

if welet a, =  — 0.4 rather than y — 0.5 we obtain another
approximate solution to Eq. (3.3). This function, as well as
its error function, is shown in Fig. 5. Comparison with Fig. 4
shows that although the qualitative behavior is the same for
each, the function in Fig. 5 approximates a solution to Eq.
(3.3) even better than the function in Fig. 4 approximates
the solution ¥ = i tan(x/v2). Thus we believe Fig. 5 showsa
plot of another exact solution of Eq. (3.3). Figures 6-9 show
similar results for various values of a,.
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551x%/20790[ — 4 + (#538,) /%] + 1

(4.8)

Equation (3.3) has no solutions of the tangent type oth-
erthan Y = i tan(x/v2). Thus the solutions in Figs. 5-9 can-
not be of the form Y = A4 tan(BX), A,B constants, yet they
are members of a family of solutions with a continuous pa-
rameter g, that includes the tangent for a, = i/v2.

= 1.0

20k 0.8
‘ 8

15 .0
2 | P° &
> =
10} a3
2
C

i 0.2

|
.0 0.4 X l:! 1:0 z.n; z.4’°

FIG. 3. Graph of the exact [¥(x) = itan(x/(2)'/%)] and approximate
(4.8) solutions (solid lines) to ¥” — ¥(1 — ¥2) = Oand the absoluteerror
(dotted line). A: exact solution; O: approximate solution.
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a e, i

-10 " R N A
0.0 0.2 0.4 0.8 0.8 1.0 .2 1.4 1.8
- _x_ -

FIG. 4. Graph of Y(x)/i and the error function (Y” — Y(1 - Y 2))/i for
(4.6) (@, =V — 0.5). Dotted line: error function; solid line: ¥ /i.

V. EXACT SOLUTION

In this section we show how to apply our method to
construct an exact solution (no approximation) to a particu-
lar nonlinear differential equation. This is possible because
the continued fraction representing Y '/ Y terminates for this
solution. Consider the nonlinear generalization of the
Klein—-Gordon equation,

3,0 n +m*n+ Ay’ =0. (5.1)
Let 7 = 9(x), x = e= 7% and p* = m?. Thus
d*y dny A
28 T4 x 20 gL pP=0. (5.2)
X + ax

Rescaling, let Y = (4 /m?)"/?y; then Eq. (5.2) becomes
Y"+ (1/x)Y' — Y/x*[14+Y?] =0. (5.3)

We now try to find an odd particular solution to Eq. (5.3).
Hence we represent Y by the power series

ascnresasesssomarer

FIG. 5. Graph of ¥(x)/i and the error function (¥ " — Y(1 — Y?))/i for
(4.6) (a, =+ — 0.05). Dotted line: error function; solid line: ¥ //.
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0.0 0.2 0.4 0.8 0.8 1.0 1.2 1.4 1.8

FIG. 6. Graph of Y(x)/i and the error function (Y” — Y(1 — Y?2))/i for
(4.6) (a, =y — 0.1). Dotted line: error function; solid line: ¥ /i.

i bnxn+l

n even
n=0

in Eq. (5.3). Thus we get

> b, {n(n+2)x"~'—x"*1[b] + 2b,by x*

+ (266, + b3)x* + 0(x%) ]} =0. (5.4)
Equating like powers of x we obtain
b, is arbitrary,
b,= (172*b3,
by= (172563,
b= (1/2)b],
by = (1/2'%)b3 ,
and by inspection,
b" =b3+l/23"/2 .
10
s}
ot
atb
4 -
o s e —
40T
-af
o ]
8}
8o o0z o4 o8 o8 10 12 14 1

FIG. 7. Graph of ¥(x)/i and the error function (Y — Y(1 — Y?))/i for
(4.6) (a, =+ — 0.4). Dotted line: error function; solid line: ¥ /i,
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-6- _°_ ...'
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FIG. 8. Graph of ¥(x)/i and the error function (Y " — Y(1 — Y?))/i for
(4.6) (a, =y —0.6). Dotted line: error function; solid line: ¥ /i.

Thus

Y n=0

n=0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

FIG. 9. Graph of Y(x)/i and the error function (Y * — Y(1 — ¥Y2))/i for
(4.6) (a, = —2). Dotted line: error function; solid line: ¥ /i.

’ o o« —1
L= z (n+1)b3+12—3n/2xn( 2 b3+12—3n/2xn+l) . (55)

n even n even

Constructing the table as described in Sec. IT we get

b3 5 b7 b2j—| b2j+l b2j+3
b, 0 —r 0 b_: 0 — 0 S i 0 v
2 2 2 23(1—1) 23 23(1+l)
b o 363 o b o I o ... F-DEY (- DY
o 23 26 2° 23i-D 2%
—2b¢ o 468 o 688 o 8 . (=EUTY
23 26 29 2]2 23j
—2b] o 43 o ZSba o =88 (-WbY 0
% 2 e 2" PUTD
b‘l)s (1’5 4bgj+ll

Again, each of the last three rows has had the leading
zero deleted and has been shifted one column to the left.
Therefore from the table we obtain

Y byx~!  —(2b5/8)x*  —2(bg/2°)x*
Y b -+ b, +  —2(b/8)
2
=M. (5.6)
x(8 —bix)
Therefore

Poexp [ =
oX —

which is an exact particular solution to Eq. (5.3). Therefore

,1 —172 l — 172 8b eii'ﬁ-i
1 (&) - (4)

m m blex?*_3

which is an exact particular solution’ to Eq. (5.1).

It is possible to obtain Eq. (5.7) directly by summing
the series for Y. However, the continued fraction method
should give a closed form expression for Y in all cases,
whether the series can be summed or not.

(5.7)
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r
VI. CONCLUDING REMARKS

The continued fraction method outlined above repre-
sents a powerful tool for obtaining excellent approximate
(and exact) solutions to nonlinear differential equations. In
this paper we have produced accurate approximations to so-
lutions of a nonlinear differential equation. In addition, we
have provided evidence that the known solutions are
members of a family of exact solutions. We have produced
approximations to some of these solutions. We have also
been able to obtain an exact solution using our method. The
strengths of this method are that the calculations are rela-
tively simple, the solutions are expressed in closed form, and
the solutions contain arbitrary constants that can accommo-
date boundary conditions.
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The boundary value problem for the wave equation is discussed with data ¢(r) on the
hyperplane z — ¢t = 0. We give the general form of the solution when @(r) is an entire
function of 7* of order 1 and type 0 < 7 < . As a particular case the focus wave mode solutions

of the wave equation are obtained.

I. INTRODUCTION

In recent years it has been shown that the wave equation
has pulse wave solutions with Gaussian transverse structure
(the so-called focus wave modes). These solutions leave at
least two issues unanswered: (i) how is it possible to launch
such pulses, and (ii) what is their physical usefulness?

In order to answer the first question (at least partially)
we investigated the possibility that they are solutions of a
boundary value problem. In fact, we could show that the
boundary value problem for the wave equation with data on
the hyperplane z—ct = 0 leads to the focus wave modes when
the boundary condition is Gaussian. For other boundary
conditions we found new wave solutions. We prove this re-
sult here.

Using the variables & =
equation becomes

% _,
9 G

z—ct, §=z+ct, the wave
1 9%
P 99%’

s=1 (55 "

where 7, 8 are the transverse coordinates. Let 3 be a solution
of (1) independent of 6. Then

Adh+4

a” imé
m =" (¥e™),
i (rorm™ 4
i=+—1, m positive integer, (2)

is also a solution of Eq. (1). Consequently one just has to
consider the solutions that are independent of 8, which we
take in the form

¥ =yP(re)e™,

corresponding to cylindrical harmonic waves propagating
along Oz. Substituting (3) into (1) gives

19 "'/’) W _0, a=dik. 4
rar( ar) e T T @)

We are looking for the solutions of Eq. (4) such that ¢(r) is
given on the hyperplane £ = 0.
Let us consider the Laplace equation

19 &p) 9%
— =0, 5
r&r( +a§2 ®

and let ¢ (7,£) be a solution of (5) such that dp(r,£)/96 =0
for £ =0. Then

k real scalar, (3)
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Y(ré) = \ /—a— r - a4y (r,s)ds 6)
7€ Jo

is a solution of Eq. (4) provided that the integral exists and
that differentiation under the sign of integration is permissi-
ble.

To prove this last result one just has to take the Laplace
transform of both Eqs. (4) and (5) with respect to the vari-
able £. The solutions become @(r,p) and ¢(r,p), where p is
the symbolic variable and between these solutions one has
the relation ¢(7,p) = @(r,Jap). Then (6) follows from the
classical relation'? between the inverse transforms of func-
tions of p and \p.

A simple calculation also allows us to check (6) since

Ay= -g—f e~ =%A @ ds
\ 7€ Jo
Bt

Integrating by parts with the condition dp /ds =0ats=0
supplies the result.

Relation (6) is formal since a is a pure imaginary num-
ber. Then we introduce a, = € + 4ik, where € is a positive
arbitrary quantity, and we define (6) as

Y(rg) =lim - /%f e p(r,s)ds. (6"

From now on we shall use (6) and similar expressions with
this last meaning but without writing lim__, and a,.

We may remark that ¢ (r, — £) is also a solution of (5)
and that the derivative of (7,£) + @(r, — &) with respect to
¢ is zero at £ = 0. Consequently one may replace (6) by

1 a [+ — as/4¢
¥(ré) =5 ;E e @(rs)ds, €))

without any restriction on the derivative of .
As a consequence of (7) we get

lim ¢(r,§) =
£E—0

that is, to solve the boundary value problem for Eq. (4) we
are led to look for the solutions of Eq. (5) with boundary
conditions on the hyperplane £ = 0.

@(r,0); (8)
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Remark 1: A somewhat more general solution of Eq.
(4) may be obtained since multiplying ¢(7,p) by some arbi-
trary function of p does not affect its being a solution of the
Laplace transform equation. Applying the convolution
product rule leads to

_i ﬁ d X(é—_g) te —as/4§
Y(ré) = > \/;J; dé—\/f f_w @(r,5)ds.

9)

Remark 2: The paraxial approximation of the wave
equation (still assuming cylindrical symmetry) is

14 ( 31/1) 12k ¥ c?t//
ror\ Oor ar
The comparison of (4) and (10) shows that if ¥(7,£) is a
solution of (4), then
P(rz) = 9(r,22) (11)

is a solution of (10) corresponding to the boundary condi-
tion () on the plane z = 0.

We only consider here the solutions ¢(r,£) but the re-
sults we obtain are valid mutatis mutandis for the solutions
¥ (r,z). We start with a discussion of the general solution of

Eq. (5).

Il. GENERAL SOLUTION OF EQ. (5)

According to Whittaker>* the general solution of Eq.
(5)is

@(ré) = LJ-ﬂf(é‘ + ir cos 6)d6,
mT Jo

(10)

(12)

where fis a summable function such that differentiation un-
der the sign of integration is permissible.

In its holomorphy domain, f has the Taylor series ex-
pansion

AE +ircos ) = i (i)"r"%gf‘“(s‘); (13)
n=0 H
then, using the relations
—J cos>" 9df = T (Zn),
(14)

—J cos®**+16d8 =0,
7 Jo

@(r,&) becomes

© (_l)n r2n

pré) =3 !

v ( ) o). as)
n=0 2

This relation shows that @ (7,£) is a function of /%, a remark
useful later. Moreover one has the inversion formula*

1
A& = f I~ lr)

which suggests that ¢(7,£ ) is the potential of a cylindrical
sheet of charges with strength f(£).> Here I, is the modified
Bessel function of the first kind of order zero.

As an illustration of the previous relations, one has, for
instance,

f(§ +ircos 8) = e~ A& + ircos )
= @(rg) = e HIp(Ar) = f(§) =e™ ™,

+ o
"D p(r,5)ds, (16)

17

1772 J. Math. Phys., Vol. 29, No. 8, August 1988

The following relations® will be also useful:

—l-f (& +ircos6)"d0=p"P,,(£), (18a)
T Jo P

—l—f (& +ircos¢9)_""d9=p"""P,,(£), (18b)
T Jo P

where P, is the Legendre polynomial of order n and
=( §2 + rZ) 1/2.
Before discussing the boundary value problem for Eqs.
(4) and (5) we consider the case when the function f is
given.

lil. APPLICATION OF RELATIONS (7) AND (12)

Starting with f (£ + ir cos 8) = e~ (6 +ir°% 6 gpe has
according to (17) @(r,€) = e~ *¢I,(Ar). Substituting this
expression into (7) gives

W(r,€) =e 6L (Ar). (19)

In the same way according to (18a) the function
(£ +ircos 8) ' leads to @(r€) = (£2 + )~ 2, which
gives

e 273

¥(rg) = -\’ J. (r2+s2)”2
— [ % f o~ (ar/4p)sink? 6 g
m€ Jo
=i a e-r/EEK (ﬁ)
2 77'§ 0 8§ s

where K, is the modified Bessel function of the second kind
of order zero. Let us now consider the function

f(€ +ircos @) =eg=*7€ +ircosd), (21)

Substituting (21) into (12), we get, after interchanging inte-
grations in (7), '

Y(rng) = /—“—fda
2 m€ Jo

Xf exp[———/l (s+rcost9)]ds

\/>f d0e-wewwo
<[ e (- (g4

(s + il %rcos 0) }
— ) tds
/4 +A°

— u* cos? Bda
Va+4§/12 J.

that is,

a w2 uz) 2 al?r?
) = | ———= Io|—), =
yre) \arear’ °(2 YT Ay
(22)

The last example is supplied by the function

(20)
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Sf(& +ircos @) =J, (A€ + idrcos 8), (23)
where J, is the Bessel function of the first kind of order n.
One has®

+ oo
S T (A8, _ . (iArcos 6).
" (23)

Substituting (23') into (12) we get, after interchanging inte-
gration and summation in (7),

J (A€ + idrcos ) =

a + o

+ o
z f dse— 2/4¢

m= — oo

¥, (rng) =

X m (As)——f dedJ,_,,(iArcos ), (24)

but one has®’

+ 2
f e_m‘Z/‘ngV(iS)dS: 477'5 e_lzg/zalv (/1 §),
e a 2a
(25)
the integral being zero for m=2v+ 1, while, for
n—m=2p,
L f J,, (idr cos 6)d6 = J (";') . 25"

These last two relations lead to

A% e il
bt —eene $ L (AE) 5 (B1) )

2p=0
where I, is the modified Bessel function of the first kind of
order p.
Tagging the solutions by their registration number,
their behavior on the hyperplane £ = 0 is as follows:

D1o(r,0) Yao(r,0) = %
Ie ('E) .
"\2
27)

A%?
To obtain bounded solutions for 7+, A must be a pure
imaginary scalar in 3, and .

= I,(Ar),

1p22(r’0) = 6_12’2/210 ( ) ’ ¢26(r10) =

IV. SOLUTIONS WITH BOUNDARY CONDITIONS ON
£E=0

We first assume that in its holomorphy domain the func-
tion f has the Taylor series expansion

)2n f 2n)(0)

SE +ircos @) 2

E4

= i (£ +ircos 8
n=0

2n
f(Zn)(O) = (a f(u)) , (28)
auZn u=0
which implies £ "+ 1 (0) = 0.
Then using (18a) we get from (12)
— 2n 1 (§) (2n)
6) = P, = 0), 29
@(rg) ngop ami o SEP(0) (29)

which leads to

1773 J. Math. Phys., Vol. 29, No. 8, August 1988

o 2n
o) =3 (;n)! P2, (0F (0

@ - n 2n
S e o
n=0 .
since one has
2
P2n<o>=(—1)"%(:). (30)

One may also obtained (30) by making £ =0in (15).
Let @(r) be given on £ = 0. We assume that ¢(7) is a
function of » 2 with the power series expansion

p(r) = i P pan, (31)
n=0 n!
The comparison of (30) and (31) gives
£2(0) = (- 1)"2*"nlp,. (32)
Taking (32) into account, (29) becomes
)= $ (—1)" 2P (apymp (5) 33
p(ré ";0 ) (2n )' 2p) P (33)
which leads to
08 =S (—1) 2£)" 33
@(0,§ ngo( (2 )' — (26)°", (33)
since P,, (1) = 1.
Now for r = 0, relation (16) reduces to
o + o
f&) =—1—f dle‘”ff ds e“p(0,s). (34)
T Jo — oo

Substituting (33') into (34) we get, in terms of derivatives of
the Dirac distribution,

f& =

(2 )' 2, f 8" (De~"* dl
n=0

=Y (-

. (2')' (28)".

s

n

Then using the Borel transform® we get finally

'l

: 0 -t _1 n
S +ircoso) = ["et 5 (—1r

X @, (2€ + ir cos 0)*" dt,

(35)

which brings us back to the situation discussed in the pre-
vious section where the function f was given.

Let us consider, for instance, the boundary conditions
@(r) =e~*"";onehasg, = ( — 1)"A?" and (35) leads to

Sf(& +ircos @)
=), ¢
=L .

Substituting (36) into (12) and the result into (7), we get

(/lzt)"
e o (2n)!

“cosh(24yt (£ + ircos 8)) dt.

———— (2 +ircos 8)*" dt

(36)
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+ o
Y(ré) =—;— ’—% J-_w dse =%

X—l-f de fw dt cosh(24 \t (s + ir cos 8)).
7 Jo o
(37)

Interchanging the integrals one has, after integration on s
and 6,

Y(r,€) =%f” e~ -4/ J An[E)dt.
(1]

Using the variable # = «?, this integral becomes a Weber’s
integral,®” leading to

¢(r’§)= [1/(1__4/{2§/a)]e—/l’rz/(l—:uzé'/a)’ (38)

with @ = 4ik the solution (38) multiplied by ¢*%, in agree-
ment with (3), becomes a focus wave mode solution of the
wave equation.’

Using the dimensionless variablev = — A %%, the power
series expansion (31) becomes

= @,
v) = ="
¢( ) n;o n!
This implies that ¢(v) is an entire function of order 1 and
type 0 <7< oo (see Ref. 8) with

7= lim sup”\/|§,] .

Consequently, when the boundary condition ¢(v) on the
hyperplane & = 0 is an entire function of order 1 and type 7,
the relations (35), (12), and (7) supply the solution of the
wave equation.

The confluent hypergeometric functions are one of the
most important classes of this type of entire functions. Many
special functions such as the error function, Fresnel inte-
grals, Bessel functions, and Whittaker functions can be ex-
pressed in terms of confluent hypergeometric functions.

The exponential function is of type 1 while the Bessel
function I,(iyv) is of type }. Using this result® (that is, that
the order or type of product of two entire functions is at most
the larger of the respective orders or types) we see that the
type of ¢,,(r,0) = "2 I,(v/2) is at most 1.

Remark: The previous results may be generalized to the
spinor wave equation'® with the coordinates (r,6,£,£):

(39)

(40)

ad ofd 1 3
Y +e » 30 ¥,

3 or (a1)
ero(_a.+ii)¢l_2%= )
ar " 7 a0 Y

It is easy to see that each component ¢,, 1, satisfies the wave
equation (1). Looking for the solutions ¢,
=y, (1,6,£)e™, we get from (41)

2ik¢l+e—f8(i_ii)¢2=o,
ar r do (41
7 a) o,
C L %y —2%¥_
¢ <ar+r30 -2

which leads to
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ENLEPY _3_)

= (ar ae) v
while ¥, is a solution of the wave equation.

Consequently, taking for ¥, any of the solutions pre-
viously discussed and using (42), one can obtain a solution
of the spinor wave equation.

Let us note that, for the spinor field, the boundary con-
ditions on the hyperplane £ = 0 have to satisfy condition
(42).

(42)

V. DISCUSSION

We have only considered here the solutions with cylin-
drical symmetry but, using (2), it is easy to generalize the
previous results to boundary conditions on the hyperplane
& =0 of the type g(r)e™®.

According to the second remark at the end of the Intro-
duction, we may consider this work as the relativistic gener-
alization of the boundary value problem for the paraxial
equation with data on the plane z = 0. Let us notice that for
an observer traveling with the wave the solutions #(7,£)
have the look #(r), a remark already made by Belanger' for
the focus wave modes.

It is also interesting to consider the relativistic behavior
of the solutions under a Lorentz transformation. Indeed for
an observer moving along 0z with the uniform velocity v, the
transverse coordinates r,@ are invariant while one has

(&R~ (Ek") =1 =B/ (1 +B) (&k),

B=v/e, &' =J(1+B)/(1—-P) E
Using (43) it is easy to prove that the solutions that we
previously obtained behave as scalar under the Lorentz
group.

The physical usefulness'? of these solutions, an issue
previously stated in the Introduction, will be discussed later.

Let us call the previous solutions, solutions of class a
and note ¢, (r,§,4), A being the parameter of the dimension-
less variable v. One can obtain two other classes of solutions.
First we define the solutions of class b by the relation

(43)

+ o

U, (r§'A) = S(E =), (rs'A)ds,

(44)

where fis a differentiable function such that fi, is zero at
infinity. An interesting case is when f'is the Gaussian func-
tion shifted in direct and Fourier transform spaces:

0) — 1 s—86)?° . £
1680 = o oe | g o= 3)).
(45)

where o and w are positive scalars. Then ¢, is the Gabor
transform of ¥, (see Refs. 13 and 14). The solutions of class
¢ are obtained by a weighted integration on A:

vetrgan) = [ F(%) Yo (rEAYAA. (46)

Taking the focus wave mode solutions, for ¢, relation (46)
supplies the splash wave mode solutions.'®
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Solutions of reaction-diffusion integral equations describing explosive
evolution of densities for localized structures
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Reaction-diffusion integral equations are studied with special regard to explosive-type
solutions. Certain localized structures can grow explosively in time without change in spatial
structure. The characteristic shapes can be described in terms of elliptic functions.

I. INTRODUCTION

Modern science exhibits a rich variety of phenomena of
nonlinear nature. Their theoretical description often poses
extremely challenging problems. Examples of such nonlin-
ear phenomena are found in plasma and laser physics, classi-
cal mechanics, chemistry, and population biology.

One type of phenomenon that may occur in plasma
physics as well as in other fields is the so-called explosive
instabilities,” characterized by the fact that amplitudes of
interacting waves, or population densities, may grow to infi-
nite values in a finite time. In plasmas, such explosive insta-
bilities are caused by positive-negative energy wave interac-
tion, which may occur, e.g., in systems that possess free
energy, such as electron beams in plasmas.>* The plasmon
density may then grow towards infinite values in a finite
period of time.

It is the purpose of this paper to study a generalized
form of the reaction-diffusion equation,® which includes also
a time-integral part and to look for solutions of explosive

type.

Il. THE REACTION-DIFFUSION INTEGRAL EQUATION
Consider the equation

t

—a—n—-——a—(Da—n)+cn2+dnJ n*dt'. (1)

at  Ox Ox —w
Here we assume that the diffusion coefficient D = an, where
a is a constant, i.e., we have a linear dependence of the diffu-
sion coefficient on the density #. Equation (1) is clearly non-
local in time but local in space.

The assumption that the contribution from the integral
term is formally local in space means that it is assumed that
the process related to the integrand occurs, for all times, at or
close to the point x, or that, as a result of spatial homogene-
ity, the contributions from processes at a distance could be
considered equivalent to nearby processes. It remains to be
verified separately to what extent the assumption about lo-
cality in space is justified for each particular situation that
the model equation will be applied to.

It should be emphasized that spatial homogeneity might
be justified as an approximation when representing correla-

*) On leave of absence from the Institute for Electromagnetic Theory and Plas-
ma Physics, Chalmers University of Technology, S-412 96 Goteborg, Swe-
den.

® Titulaire d’une chaire de physique des plasmas de la Fondation de France.
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tion effects in the integrand of the integral term including the
reaction processes, whereas inhomogeneity effects could be
more important for the diffusion term, because of the deriva-
tives. It should also be emphasized in this connection that
the solutions we consider here are solutions that are local-
ized in space. In ionized media spatial localization of pro-
cesses is favored by low temperatures and the presence of
magnetic fields.

One might imagine various situations where the integral
term would correspond to physical situations of annihilating
or creative processes. For such cases, where in Eq. (1) the
constant d is negative, i.e., when annihilating processes are
considered, the integral term could as an example corre-
spond to an attachment, e.g., a loss of a free electron, to a
neutral particle, which was formed at an earlier stage by a
process of recombination of an electron and an ion, the rate
of the early process being proportional to n2(¢’), assuming
in the earlier stage n,(¢') = n,;(t’), where n, and n, repre-
sent the electron and ion densities. In Eq. (1) (the second
term on the rhs) the coefficient ¢ could, however, be positive
as a result of creation of new free electrons by collisional
ionization of ions by electrons, again assuming n, = n,.

Alternative cases, where the constant d is positive,
would, for example, correspond to plasma—plasma interac-
tion for situations where free energy is available, which are
accordingly explosive, or to creative interaction of specia in
population biology.

11l. SOLUTIONS OF THE REACTION-DIFFUSION
INTEGRAL EQUATION

Let us introduce the following renormalization of space
and time, namely

(c/a)'*x—x, ct—t

and furthermore the quantity € = d /c.
Then Eq. (1) takes the form

an ad ( a’l) 2 ft 2 Js!

—_—=—|n— dt’. 2

a e\ )] " @
We look for separable solutions in the form

n(x,t) = T(t)X(x). (3)

Inserting expression (3) into Eq. (2) and dividing through
by 72X leads to

© 1988 American Institute of Physics 1776



r 194 oxX !
T2 X ox (Xax)+X+€X f T
(4

Requiring that the right-hand side of Eq. (4) be independent
of t leads to the differential equation 72 = a T, where a is an
arbitrary constant. This equation has the solution
T(t) = — a/(t + aff), where aff must be negative for the
solution to be valid for large negative ¢. Thus T can be written
as T'=T(0)-t,/(t, — t), where

= —aﬁ=[% [In T(t)]] =[% [lnn(x,t)]]‘=

t=0
is the time of explosion which for separable solutions, as
expressed by relation (3), does not depend on x.
Furthermore let us introduce the convenient notation
¢ = aX. From Eq. (2) we then obtain the following ordi-
nary differential equation:

¢ ) 2 5

L (42)—p-p-cp. (5)

By multiplying both sides of Eq. (5) by ¢(d¢/dx) and inte-

grating twice we can express

1 g dé
—_ Xy = + —— ,

S A P B 7 S e £

(6)

where Cis a constant of integration. In the following we here
chose C=0.

By making the convenient substitution y = y¢ we then
obtain

x=\/3Jm & : %
7 [1_%y2_€%y4]1/2

First, consider the case where € >0, t.e,, d>0, ¢c>0 in Eq.
(1). We express the relation (7) in the form

10 )1/2 J"‘T dy
= (10 , (8)
* (e B [(@+p)(b2—y)]"?

where

5 5 2 5 172
e[ 2"
8¢ 8¢ 3e 9)
5 5 2 5 172
vo-ge [y
86+ 8¢ 3e
and
éo=b2, a@>b2

The integral in relation (8) can then be expressed in terms of
an elliptic integral F(k,p) as

[ &
B [(@+ ) (b2

= [@® + 5?7 F(kp),

_yZ)]l/Z
(10)
where
k=b/{a*+b%)"?, (11)
cos @ =o/b= (¢/dy)'"%. (12)
In relations (10) and (11)
[@® + 5212 = 2[(5/8¢€)* + 5/3€]"/*

1777 J. Math. Phys., Vol. 29, No. 8, August 1988

so that we obtain from (8)

5\2 5 —1/4 b _ ‘/’5
x=‘/§[(§) +§E] F{(a2+b2)”2 08 IT]’
(13)

which defines x as a function of ¢ in terms of the elliptic
integral F, with @ and b expressed by (9). We notice that
when €-0, i.e.,, d-0in Eq. (1), k-0 in (11), and since

F(O,p) = @, from (13)
lim x = 242 cos ™" ((+3/2)V9),
€-0

or

=13[1+ cos(x/42)]. (14)

We now, furthermore, consider the case where € <0, i.e.,
d <0, ¢> 0. In this case there is a partial counterbalance in
between the integral term and the quadratic term in Eq. (1).
Here we make use of the elliptic integral form

% &y i 1

V% [(Az—yz)(32_y2)]1/z—3 Fke), (15)
where

k=A/B, (16)

27172

cos @ = [A2 = A¢ ’ an

where
q42= _[( 5 )2_ 5 ]1/2
8|ef 8l€| 3] 5

2 12
8¢l 8le| 3el

For the expressions in the square roots of (18) to be positive
we have to assume |€] <15 In (15)-(18) we have B> A4 >y,
¢, = A 2. For € <0 we then obtain

x=m [g_'_((%)z_glel)l/z:l —-172

27172
o [£224]) wca

which for this case defines x as a function of ¢ in terms of the
elliptic integral F, with 4 and B expressed by (18).

In the limit |¢| = 1 we have k=1, ¢ = #/2 or 0 and
F(l,p) =In{tan(w/4 4+ ¢ /2)]. From (17) and (18) we
then obtain F = « and F = 0in the two points ¢ = 7/2 and
@ =0, and correspondingly x = « and x=0. In these
points ¢ = ¢, = § from (18), when |¢| =

From the relation (19) we find that i m the limit |¢| -0
we again recover the simple result (14), as we should.

In Fig. 1 ¢ is plotted as a function of x from relations
(13), (14), and (19) for € > 0, € = 0, and € < O, respectively.

The related solutions to Eq. (2), expressed in renormal-
ized variables, therefore become

n(x,t) = (t, — 1) " '$(x), (20)

where for the different cases ¢ is related to x as given by
relations (13) and (19) or by (14) for e =0.

(19)
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FIG. 1. The function #(x) in relations
(13), (14), and (19) fore>0, e =0, and
€<0, respectively. The more strongly
marked curve corresponds to € = 0. The
e-values chosen for €>0 are 0.1, 0.5, 2,
and 10. For € <0 the plotted curves corre-
spond to |e]=0.1, 02, 0.23, 0234,
0.234 35,0.234 373, approaching the hori-
zontal line ¢ = ¢, =§ in the limit where
|e] =4 =0.234375.

IV. INITIAL AND BOUNDARY CONDITIONS

It would be appropriate to address the question of suit-
able initial conditions and proper boundary conditions for
Eq. (2). For comparison it would be interesting to note that
if one solves the corresponding equation where the diffusion
term as well as the integral term is absent one obtains a solu-
tion n(x,t) = n(x,0)/[1 — n(x,0) -t], which is not in a sep-
arable form since the time of explosion z, = n~'(x,0) de-
pends on x. Only if n(x,0) =n, is a constant, which
corresponds to X(x) =a~' and to ¢ = 1, do we obtain a
“separable solution” in the limit for what remains of Eq. (4)
if the diffusion term and the integral term is omitted. In the
expression for t, = {(d/dt) [In(x,t)1},_, itis, in fact, nec-
essary that for ¢, constant when considering the full Eq. (4)
that n(x,t) is either independent of x or that it is of the sep-
arable form (3). For the latter case different values of the
arbitrary constant o, or of #,, would correspond to different
initial stages of the shape-preserving evolution of n(x,?).

It should be mentioned in this connection that proper
boundary conditions could be either localized or periodic as
allowed by the structure of the solutions of Eq. (2). Here we
assume that the extension of the localized structure of the
solution is smaller than that of any external boundary.

The next interesting question to address would then be:
What happens if initially the space dependence differs from
the form defined by ¢(x) as a solution of Eq. (5). For cases
where the integral term in Eq. (2) is omitted the answer is
that the new different form of the space dependence will
adjust itself in the course of time and approach the form
¢ (x) asymptotically. Analytic theory to be published else-
where by the author on these issues has been confirmed by
computer investigations. These results confirm the interest-
ing role that the simple localized solution (15) for € = 0 (see
also Fig. 1) could play in more complex situations. They,
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furthermore, elucidate the properties of dynamic stability of
the shape of the localized solutions. The interesting issue of
the interaction of two or several localized solutions has also
been addressed by the author in separate forthcoming publi-
cations considering the case € = 0. Such localized solutions
might, as it turns out for the case € = 0, even be considered as
units of superposition for complex situations and general-
ized systems.

V. SOLUTIONS OF COUPLED REACTION-DIFFUSION
INTEGRAL EQUATIONS

Next let us consider the coupled set of reaction-diffusion
integral equations

éﬁl=_a__(D %)+cn2+gnn -|-dnJ.t andI'
at ax lax 17*1 1751762 1751 . 1 ’

(21)
on, 3 on ! .
—at—z=a‘(pza—x2)+cz’1§+82”1"2+d2”2f_w"1”2dt ’

(22)

where we assume

D=D,=A(n;+n,), d,=d,=d.
Solutions to the coupled Egs. (21) and (22) can then be ob-
tained in the form n, = a,n, n, = a,n, where a, and a, are
determined by

a=—2"8_g g8 ., @
€102 — 8182 €16 — 8182
and n satisfies the equation
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an a ( an)
P Aa, +a,) = (nZZ
at (@, +a) ox " dx

t
+ cn* +da a,n J n*dt’, (24)

which is of the type solved above.

VI. CONCLUDING REMARKS

Exact solutions have been obtained for the reaction-diffu-
sion integral equation (2) for positive and negative values of
the coefficient €.

An evolution according to these solutions would require
particular initial conditions in space to be fulfilled, which con-
form with the obtained solutions. One might expect, however,
that properties similar to those described in Sec. IV for the case
€ = 0, but for generalized initial conditions, would prevail also
for cases where |e|>0. Confirmation of such a prediction
would undoubtedly attach some extra weight to the impor-
tance of the solutions obtained here. Detailed considerations of
related questions are, however, beyond the scope of the present

paper.
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The solutions found may be regarded as examples of par-
ticular solutions of reaction-diffusion integral equations. They
may offer a challenge for further investigations.
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In this paper a new “b” number (b = a,a, ' a,, where n is even and each a is an

anticommutative number or Grassmann number) is introduced, and the specialities of this “b”
number are also expounded. Moreover, division by an “a” number is defined. At the same time
a derivative concept of the functional containing an “a” number is also given in the traditional

approach, and a new formula for the derivative of this functional is advanced. The new
formula not only encompasses Berezin’s formula but also solves the problems that cannot be
solved by Berezin’s formula. For “b” numbers, a unique infinitesimal calculus will be

proposed.

I. INTRODUCTION

In 1844 Grassmann’s algebra was put forward."? In
1965 Berezin gave the rules of functional derivation and inte-
gration for Grassmann algebra elements.>* In the 1970’s the
supersymmetry theory was formulated. The theory uses
Grassmann’s algebraic elements 8, as parameters. These are
anticommutative numbers, i.e., “a” numbers for the sake of
brevity.

In this paper we introduce a new kind of number, the
“b” number, which is neither a real number nor a complex
number except for b = 0, and has special properties.

Since Grassmann expounded his algebra, division in the
set area of “a” numbers has not been defined up to now.
What is the source of the difficulty? It seems that 8, X 1 does
not have a definite value. For example, defining 8,/6,

=6,%X60;'=1(6; is an “a” number), it should be 6, X 1
= @, seemingly. But when we use the multiplicative associa-
tive law to calculate, then

;X1 =06,X(8,X0;"
=(6,X0,)X0;'=0x6""'=0.

According to the traditional idea of real 1, it seems that the
former is true and the latter is wrong. It seems that to define
division by an “a” number, the associative law of “a”
numbers is destroyed. However, we will see that the former
is wrong and the latter is true, becausein 8, X 6~ ' the 6, and
@ ! are all “a” numbers, and the product of these two “a”
numbers is unity (i.e., 1). This 1 is in the category of “b”
numbers rather than real numbers. We will show that
6; (#6;) multiplied by the “b” number 1 is equal to ; (i.e.,
0,X1=26;) and if 6, = 6,, then 8, X 1 = 0. It follows that
the “b”’ number 1 relates to the “a” number &,. Hereafter we
write the “b” number 1 as 1(8;) for clarity. Thus we have
this important result: Within the range of “b” numbers the
product of some “a” number and 1(6; ) is equal either to this
“a” number or to zero. Then the associative law of “a”
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numbers holds true. After “b” numbers are introduced we
can define division by an “a” number.

Il. OPERATIVE RULES OF “a” NUMBERS

In a number of references®®” it is implied that the multi-

plication of “a” numbers satisfies the associative law and the
anticommutative law. On the basis of this point this paper
expounds the operative rules of “a” numbers in greater de-
tail. Let 6, be an “a” number. From the definition of the
external product in Grassmann’s algebra we know? the anti-
commutive law

eal 0‘12 = - 6‘12 0&, 4
6,0, =02=0,
in which « is not a repetitive index.

Hypothesis 1: An “a” number multiplied by zero is zero
still, that is,

6,:0=0-6, =0.

(2.1)
(2.2)

(2.3)

Corollary 1: Zero (0) is an “a” number.
Definition 1: The continuous product of an “a” number
is as follows:

6,6,6,6,=[(6,6,)-6,]-6,.

Hypothesis 2: The multiplication of “a” numbers obeys
the associative law, i.e.,

2.4)

91026304 = [(0102) '03]04 = [91(0203) ]04

= (0,0,)(6,6,) = 6,10,(6,0,)1. 2.5)
Theorem 1: Any two adjacent “a” numbers 6,6, in a
continuous product 6,6, -6,6; - - -6, obey the anticommu-
tative law.
Proof: Note 6,6, in the continuous product 8,6,6,0,.
From Eqgs. (2.5) and (2.1) we have
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6,0,60,6, = (6,6,) (6,6,)
= (0|02)( — 0403) = - 01020403.

To define division by an “a” number we introduce the
new “b” number and study its regularity.

lit. THE “b” NUMBER
Definition 2: Let 6, be an “a” number and
b=6,6,-6, (n=246,.).

Equation (3.1) defines a “b” number.

Theorem 2: Zero is also a “b” number.

From Corollary 1 we know that zero is an “a” number.
But from Definition 2, 0-6, and 8,:0 have to be “b”
numbers. According to Eq. (2.3) the “b” numbers0-p,, and
@, -0 are zero. Obviously the result zero is not only an “a”
number but also a “b” number.

Theorem 3: A *“b” number obeys the commutative law
of multiplication.

This can be proved at once by Theorem 1.

Theorem 4: A “b” number obeys the associative law of
multiplication.

3.1

IV. SPECIAL PROPERTIES OF THE “b” NUMBER

To sum up, “b” numbers and real numbers have only
one common element, zero. At the same time they both obey
the commutative law and the associative law. Naturally, we
can also determine that “b” numbers obey the distributive
law; this determination is not in contradiction to what was
said above. However, whether or not the “b” number is a real
(or a complex) number is still in question.

The real number has two properties, as everyone knows.

(1) If C,-C, =0, then either C, =0 or C, =0; or if
C? =0, then C, = 0 must be satisfied. 4.1)

(2) If C,#0 and C,50, then C,C, 0. (4.2)

However, the “b” number does not have these proper-
ties, but does have its own special characteristics.

Property 1: The product of a ‘“b” number multiplied by
itself is always equal to zero.

Let 85 #0, 85. #0, and b = 656;.. Then we can obtain

In general we have

bp=0 (n=234,.). 44)

Property 2: The product of two nonzero “b>” numbers is
probably zero.

For example, by = 0 -6, #0, bg, = 6, 6, #0, but
from Egs. (2.1) (2.2), and (2.4) we have

bBI 'bﬁ2 - Bﬁl ea 'OBI 'ea = eﬂl ( bt 6326(1 )ea =0. (4.5)
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Property 3: The product of a nonzero “b”’ number and a
nonzero “‘a”’ number is probably zero.

For example, consider b = 6,6,, where 8,#0, 0,70
and 6, #0,. Then b #0. However,

bel = 910201 = — 9.9102 = 0, bez = 016202 = 0-
(4.6)

It can be readily found that whether or not b equals zero
depends upon whether or not the factor 6, is contained in b.
From the three special properties of “b” numbers it fol-
lows that “b” numbers (except for zero) are neither real nor
complex numbers. Now that we have introduced “b”
numbers, division by an “a’” number can be defined.

V. THE REGULARITY OF DIVISION BY AN “a” NUMBER

The key to division by an “a” number is to define its
inverse elements. The inverse element of 8, is @ ,~ ! in the case
of “a” numbers. We write down the equation

6,/6,=6,x6,'=1(8,). (5.1)

Because 1(8;) is the product of two “a” numbers, it should
have all the characteristics of “b”’ numbers as seen in the
previous section. Then 1(6,) has the following results:

=0, for 6;=6, (5.2)
0,-1(6,) = 6,%80, 9,.—1[ ’ /
71060 =6,x 0% #0, for 6,#6,, (5.3)
=0, for 0=0,
6, "1(8,)=6,"%6, e.—'{ ’ L
i 16 =6,77X6,x8, #0, for 6,#6; .
(5.4)

From the special properties of the “b” number we know only
that 6, X 1(6;) and 6, ' X 1(6;) (6;#86,) may be nonzero,
but according to the traditional concept of unity 1 we can
define

6,x1(8,) =6,

f £, 4
t9j_1><1(9i)=9j—‘, or 0]#61 (54)
By virtue of Egs. (5.3), (5.4), and (5.4') we obtain
6,:1(6,) = (1-6;)6, (5.5)
0j—1-1(9i)=(1—5i,.)9,.—', (5.6)

in which j is not a repetitive index.

From the above discussion we see that we can only find
the inverse element of an “a” number, but do not find the
unity number 1 within the realm of “a” numbers. The 1(8;)
must belong in the realm of “b” numbers. On this point there
is a difference between the “b”’ number and the real (or com-
plex) number in principle.

Now let us define division by many “a” numbers. The
equality 6,0,/60,0, = 1 is used as a convention.

The definition can be written as follows:
0102/0162 = 1(0]02), (5.7)

or
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6,9,

1(6,6,) = =6,0,X(0,6,)"'=6,0,0,'0 "
6,6,
=0,1(6,)0; ' = 6,0 'X1(6,) = 1(6,)1(6,),
(5.8)
s0
1(6,6,) = 1(6))1(6,). (5.9
Similarly we may define
0,0,0,0,/0,650, = 6,6,0,0,X (6,0,6,) "’
= 0,0,6,0,05 0,05 (5.10)

Note that we use the equality (6,6,8,)~' =0,'6,7'6,".
A rule for reduction of a fraction can be obtained by Eq.
(5.8):

1(3)36;)
12 —1(6,)1(6,). 5.11
0.6, (6,)1(6,) ( )
From Eq. (5.10) we have
0%/6=02x0"'=0-6""=0. (5.12)
From Egs. (5.11) and (5.5),
S 0%6 =6-1(6) =0. (5.13)

Note that in calculating the reduction of a fraction we must
write the 1(8;) in the numerator of the fraction. If we leave
out the 1(8,), then 8 Y/ = 0. This is certainly wrong.

If we write “c” for *“‘real number”’, then

c/c=1(c) =1. (5.14)

The equality 1(c) = 1 shows that the unity number 1 in “¢c”
numbers is independent of any number in the realm of *“‘c”
numbers; that is, 1(c,) = 1(c,) = -+ = 1. This is to distin-
guish from 1(8). So the rule for calculating 1(c@) is

1(6010263) = 1(0)1(9])1(02)1(03)
=1-1(8,)1(8,)1(65)

=1(6,)1(6,)1(65). (5.15)

VIi. THE LIMITATIONS OF BEREZIN’S FORMULA
In 1965 Berezin® gave a formula to find the rule for the
functional derivative of “a” numbers, i.e. (see Appendix A),
Sla(x,)a(x,) --a(x,))
da(x)
=68(x —x,)a(x,) " -a(x,)

—8(x —xy)a(xy)a(x;) " ra(x,)

+ o+ (= D8 —x,)alxy) alx, ).
(6.1)
One observes that this rule cannot relate to the concept of
ordinary derivatives. In this paper we recognize that after
division by an *“a” number is defined as above, then from the
concept of ordinary derivatives we not only derive Eq. (6.1)
directly but may also solve new problems which Eq. (6.1)
cannot solve. For example, let the increment of ¢(x) be

AY(x)=£6y(x), (6.2)
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where the “a” number £ is independent of space-time and an
infinitesimal quantity, while @ is also an “a” number inde-
pendent of space-time. Consider the functional

fle(x)] = 6¥(x), (6.3)

in which 8-y¥(x) are all “a” numbers. Then by Berezin’s
formula the functional derivative of Eq. (6.3) is

19 _ 80V _ _gse s o
SY(y) SY(y)

Under the conditions of Eq. (6.2), the increment Af obvi-

ously has two “a” numbers, and is then equal to zero. So the

result of Eq. (6.4) is wrong.

(6.4)

VII. FINDING A FUNCTIONAL DERIVATIVE FOR “a”
NUMBERS FROM THE CONCEPT OF THE ORDINARY
FUNCTIONAL DERIVATIVE

Now let us consider the functional derivative. Let there
be a functional f [#(x)]. By the definition of variation® we
have

5 [$(x)] = f d‘y%wm

Let us divide the four-dimensional space-time into arbitrari-
ly small cells of volume, with index i. Then f[¢(i)] is an
ordinary function of ¥(#),” and ¢( j) is the value of ¢ in the
Jth cell. Then we may obtain

(7.1)

sflpn) =y LD 55,

7 oY())
ISR/ 0/0)) PP 79
;, AT SY(HAV,. (7.2)

As AV; -0, Eq. (7.2) becomes Eq. (7.1). Thus we can ob-
tain

ACIC) B U '3 ¢ 10)

SY(y)  av-o AV, 3p())

8; IflY(N)]

T av-0 AV, o))

I l¥(N]
=§(x —y) L 7.3
(x—y) ) (7.3)

where f [¥( j) 1/3%( j) is a derivative of an ordinary func-
tion, i.e.,

i _ A YD
() AY(j)
Since we have the definition of division by an “a” number, it
also holds true that the numerator and the denominator in
Eq. (7.4) both contain “a” numbers. Thus we must interpret
the equation as follows:

(7.4)

AY(jH—0

AU YN 1X(AY())
Now let us find the derivative for (6.3) under the conditions
of (6.2). Note that 1(8) is a “b” number,and 8 X 1(8) = 0.
By means of Egs. (7.3), (6.2), and (5.10) we can get

(7.5)
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O ly(x)]
5¢Y(y)
IflY( )]
— 5t (x — py FNDT
=2 =500
aey( )
= 8%(x — yy 210¢(D)
* =N =500

ap(n-0 Ag(f)
=8*(x —~y) lim 6AY(j) X (Ay(j))™!
Allzj—-O

=8*(x —-y)lgiir‘n) BEOY( ) X (E6Y( 7))~ (7.6)
=8(x ~y)l§in3 O XE ' xO X0

XY J) XY(j) !
=8(x~»)0 1O P()H)=0. 1.7

The result of (7.7) may be directly obtained from Eq. (7.6)
since @2 =0.

VIIl. A NEW FORMULA FOR THE FUNCTIONAL.
DERIVATIVE CONTAINING “a” NUMBERS

Let the continuous product of » “a” numbers be
(a,(x,)a,(x,) -a,(x,)), where each a,; (x;) may be inde-
pendent or the increment Ag; (x; ) (i = 1,2,...,n) is not inde-
pendent. For example,

Aa,-(x‘-) = é’ai(xi)am-p(xiq—p)ai—s(xi~s)'

From (7.3) the functional derivative of this continuous
product is

8la (x))ay(x;) - -a,(x,))

da, (x)
da, (X
=8,,6(x —x,) —:l;‘—(—,llaz(xz)a3(x3) g, (x,)
1 H
da, (%)
—8. O(Xx — Z @, (X,)
2w (X — X3)a,(x,) aaz(xlz)aa(x;;) a,(
+-~+(—l)”*‘&(x—x,,)&,,ka,(x,)
da, (x.)
X a,_(x,_;) —mm—, 8.1)
Gt Comi) G (

where the index j in x} represents the cell j of space-time x;.
From Eq. (5.1) da, (x})/da; (x}) will become (see Appen-
dix B)

98 (¥) _ oy B 1[ lim Aa,.(x{)]
da;(X,)  AachH~o0 Aag,(x}) Aa(x)) -0
=1{4a;(x)]. (8.2)

The last steps have been written in abbreviated form for con-
venience in writing. Then (8.1) becomes, in the notation of
(8.2),
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Ola(x))ax(x;) " -a,(x,))
ba, (x)
=8, 0(x —x)1[Aa,(x;)]ay(x;) "-a,(x,)
— 4+ (= D" 18,8(x — x,)a,(x))
Xeray _y(x,_)1[Aa,(x,)].

(8.3)

This is a new derivative formula that contains Berezin’s for-
mula. When Ag, (x;) (i = 1,2,...,n) and
a,(x)a(x,) -a;_ (x )ai+ 1 (xi+ 1) a,(x,)

have no common *““a’”” number factor, then from (5.5) we can
obtain

ay(x)) @ () 1Aa(x) ] a, ( (X)) ra,(x,)

=a(x;) a1 (X, _)a (X)) a,(x;).
(8.4)

Substituting (8.4) into (8.3), Berezin’s formula (6.1) can be
obtained.

If Aa;(x;) (i=123,.,n)and

al(xl) g (X 1 )a,-+ 1 (xi+ 1) e, (x,)
have a common “a” number factor, then from (5.5) and
(5.6) the ith term in (8.3) is zero. This is the result of Sec.
VI. Using the new formula (8.3) as the derivative for (6.3)
under the conditions of (6.2), we can obtain

oY (x)) _ 8 — )8 ay(j)
oY(y) W j)
= — 6'(x — )8 1(AY)

= — 8 (x—»)01[56¢]

= —8x —»)O1[£]11(O1[$] =0. (8.5)

According to the traditional idea of real numbers the result
for (8.5) can only be

B1[E11(O[Y] =6-1-1-1 =6,

Then §(0y(x))/8¢(y) = — 8*(x — ). Clearly this is a
wrong result.

IX. THE INFINITESIMAL CALCULUS OF “b” NUMBERS

Now we will find the functional derivative containing
“b” numbers by analogy with the derivation of “a” numbers.
Since b2 = 0 and “b” numbers obey the commutative law,
the sign of every term is positive. Then the following equality
holds true:

8(b(x)b(x;) " b(x,))
&b(x)
=8(x —x,)1[Ab(x))1b(xy) - b(x,)

+ o+ 8(x —x,)b(x) - b(x, ) 1[Abx,],
(9.1)

in which the 1(b,) is
bxb;'=1[b]. (9.1

Other definitions are analogous to those in Sec. V. For exam-
ple,
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1(b;) Xb; = (1 —8;)b;, etc. (9.17)

Concerning the integral of ‘b numbers, the linear term
of a “b” number occurs only because b ? = 0, s0 we need only
consider the integral § bdb. Let S be a “b” number con-
stant. Because an integral is invariant under translational
transformation, we can get

fbdb=f<b+ﬂ) d(B + b)

=f(b+ﬁ)db=fbdb+fﬁdb. (9.2)

1t is evident that

(=0

Since the integral {6 db is a “b” number constant, then let
this “b” number equal 1. We have

deb:l.

For the integral of the product of many “b” numbers, we
have following result:

(9.3)
94)

f bibjbk .t .blbm dbn

= bjbk °t .blbm6in + bibk . 'blb (S

m*jn
4+ +bfbj"'b15mn- (9.5)

X. APPLICATION OF THE NEW DERIVATIVE FORMULA
IN GAUGE FIELD THEORY

In gauge field theory, when we deal with functional inte-
grals containing ““a”” numbers the transformation of integral
variables is often used. At the same time we must calculate
the value of the Jacobian in the transformation. However, in
finding some functional derivative using only Berezin’s for-
mula, we would obtain the wrong resuit. To correctly solve
this problem we must use the new formula (8.3).

The BRS transformation is'®'!
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AP(x) = ig(x)E Z— C?,
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g

To find the value of the Jacobian we must calculate ¢ (x)/
8Y(»), etc. From the new formula (8.3) we can obtain
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8¢ (x) _

Ae
Mx—v)—iel_co
500 (x—y) —if 5 C°1[Ay]

=8(x—y) —ié’—/l—a—C"l[-—ié'—%—“—C“z/J]
2 2
— &' (x—y) + Fg% C“1(§)1(§ c")1(¢)

=8 -y + B 1OE cal(fl-z-i c")uw)

=8(x—y), etc. (10.1)

However, according to Berezin’s formula we can obtain
WO _ g1(x—y) — ig 4
SY(y) 2

This result is clearly wrong,

" ce. (10.2)

X1. CONCLUSION AND DISCUSSION

(1) Based on the existence of both fermions and antifer-
mions in particle physics, we can assume that every “a”
number has an inverse element “a~!”. They are both anti-
commutative numbers.

(2) Given the equation 6,/6,=6, X0 ' =1(6,), then
according to the special property 3 of “b” numbers,
6;X1(6,)7#0and 6, ' X 1(6,)#0 (8;#06,). What are the
results of these products? The answer cannot be found by the
special properties of the “b” number, but by virtue of the
traditional concept of unity 1 we may define 8, X 1(6;) = 6;
and 6;7'X1(6,)=6,".

(3) However, when we calculate 6,X1(8,) and
6 7 'X1(6,), we must destroy the traditional concept of the
unity 1. Because of the special properties of “b” numbers we
know that 8, X 1(6,) =0, 'X1(6,) =0.

(4) When we define division by an “a” number, some-
times we use the traditional concept of unity 1, and some-
times we destroy it. But we use the special properties of the
“b” number from beginning to end. In other words, the asso-
ciative law and the anticommutative law of the “a” number
are used through the whole process of division.

(5) According to the definition of division by an “a”
number we obtain the new derivation formula, which en-
compasses Berezin’s formula as well.

(6) We introduced the ‘“b” number, which may be use-
ful in solving problems of supersymmetry.

APPENDIX A: INDEFINITE VALUE OF THE DERIVATIVE
OF 7[¥(/)]

Berezin’s formula of derivation is essentially equivalent
to the definition

. . . )
FICH) + M) — £ LD ] = Av( ) =L,
()

(A1)
in which £ [#( /)] is the ordinary function of #( j), and the
derivation of f [¢( )] is the coefficient of the linear term of
Ay(j). However, in the realm of “a” numbers the derivative
defined above has an indefinite value. For example, if the
increment A¢( j) is

Quan Xiang-Lin, Wang Lian-Ji, and Song He-Shan 1784



AY(j) = E6¥(J), (A2)
in which £-@and ¥( j) are all ““a” numbers, { is infinitesimal,
and the function containing “a” numbers is

SW(N)= 64D, (A3)
then according to the definition of the derivative in Eq. (1)
under the condition of Eq. (2), the derivative of f [#( /)]
with respect to ¥(j) is
SCH + A H] —fl¥(D]

= 0(Y(j) + A¢(j)) — 6¢())
=0AY(j) = — AY(j)O=E0¢(j)(—6) =0. (A4)

Since we have

0=¢£0y(j)(a,0) = Ay(j)(a,0), (A5)
0 = £0¢( Ha¥())) = Ay( fla (), (A6)
in which a, and a, are arbitrary functions, then

_ﬁ_'_ = — 6, (A7)
aY(j)

af. =a,0, (A8)
()

af .
—_—= ). (A9)
s Y

Thus, according to the above definition, the derivative of
S [¥(j)] has sometimes an indefinite value. This conclusion
is right only for the realm of “a” numbers, not for real or
complex numbers.

APPENDIX B: THE DEFINITION OF LEFT DIVISION

Since we use the left derivative in Berezin’s formula, we
should use the following definition of left division:

1785 J. Math. Phys., Vol. 29, No. 8, August 1988

equality:

0" —pn —1

?.-= T iX68,=1(6,); (B1)

definition 1:

6,x1(6,) =6, ] for 6,0, (B2)

07 'xX1(6)=6;") e

definition 2:

010263/040566 = (640596) I (919293)
=0¢'05'07"'%X6,0,0,. (B3)

From the special properties of ‘“b” numbers we obtain
8, x1(6,) =0, 6;7/'x1(6,)=0. (B4)
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A new definition of asymptotically flat space-times is proposed. It is shown that singularities in
these new space-times arise from regular initial data. This leads to a simplification of the
assumptions of the cosmic censorship theorem recently proved by the author [Class. Quantum
Gravit. 3, 267 (1986) ]. It is also shown that in the new asymptotically flat space-times a
stronger censorship theorem than that proved so far by the author holds.

I. INTRODUCTION
Recently the present author has demonstrated the exis-

tence of Penrose’s “cosmic censor” in a wide class of weakly
asymptotically simple and empty space-times. The censor-
ship theorem proved by the author (Ref. 1, Theorem 3.1)
contains three classes of assumptions. The first class of as-
sumptions consists of two standard conditions: the energy
condition and the causality condition. The second class are
the main assumptions of the theorem: conditions on space-
time singularities and a further restriction on the global
causal structure of space-time. There is also a third class of
assumptions consisting of conditions ensuring that singular-
ities occurring in space-time arise from regular initial data.
These conditions do not appear explicitly in the statement of
the theorem, but they are contained in the definition of the
regular partially future asymptotically predictable space-
times from a partial Cauchy surface . (Ref. 1, Definition
2.9). In this paper we shall define a new class of asymptoti-
cally flat space-times called regular weakly asymptotically
simple and empty space-times. We shall prove that this def-
inition ensures the existence of a partial Cauchy surface from
which space-time is partially future asymptotically predict-
able. Thus with this new definition of asymptotically flat
space-times our censorship theorem is considerably simpli-
fied.

In Sec. II, after recalling some basic notions, we shall
introduce the definition of regular weakly asymptotically
simple and empty space-times. Then by proving a number of
lemmas and propositions we shall prove the existence in such
a space-time of a partial Cauchy surface from which space-
time is partially future asymptotically predictable. In Sec.
111 we shall show that with our new definition one can prove
stronger versions of cosmic censorship: strong future asymp-
totic predictability and regular predictability.

1l. REGULAR WEAKLY ASYMPTOTICALLY
PREDICTABLE SPACE-TIMES

By space-time we shall mean a pair (.#,g), where .4 is
a connected orientable four-dimensional Hausdorff C *
manifold and g is a C © Lorentz metric on .#. Two space-
times (.#,g) and (_#"',g’) are said to be isometric if thereis a

*) Present address: Department of Applied Mathematics and Astronomy,
University College Cardiff, CFI 1XL, United Kingdom.
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diffeomorphism ¢: .# — .4 that carries the metric g into the
metricg’, ie, @ g=¢"

Before we can introduce the notion of the regular weak-
ly asymptotically simple and empty space-time we shall need
the concept of an asymptotically simple and empty space-
time.

Definition 1: A space-time (.#,g) is said to be asymp-
totically simple and empty if there exists a strongly causal
space-time (.#,g) and an imbedding ©: .# —.# that
imbeds .# as a manifold with smooth boundary J.# in M,
such that

(1) there is a smooth function © on .# such that on

O(.#) Qs positive and g = O(g)